Исследователи из Массачусетского технологического института упростили процесс получения стеклоуглерода из фенолформальдегидной смолы, добавив к ней небольшой объем углеродных нанотрубок. Таким образом им удалось снизить температуру, при которой конечный материал получает наилучшее сочетание прочности и плотности, примерно на 200 градусов Цельсия. Исследование опубликовано в журнале Journal of Materials Science, также о нем рассказывает издание MIT News.
Углерод известен своей аллотропией, то есть способностью находиться в различных кристаллографических конфигурациях имея одинаковый химический состав. Причем свойства разных его модификаций могут очень сильно отличаться, например, углерод может существовать как в форме мягкого графита, так и в форме твердого алмаза. Не так широко известна его другая форма — стеклоуглерод. Он сочетает в себе высокую твердость и электропроводность, а также относительно низкую плотность. Из-за этих и других свойств его используют в качестве материала для электродов и тиглей.
Обычно стеклоуглерод получают карбонизацией полимеров при высокой температуре. Ученые из MIT решили облегчить получение этого материала с помощью добавки другой формы углерода — нанотрубок. Они синтезировали на подложке массив из многослойных углеродных нанотрубок с диаметром около восьми нанометров. Затем в этот массив заливалась фенолформальдегидная смола. После этого образцы полученного прекурсора выдерживали при различных температурах от 600 до 1400 градусов Цельсия, в результате чего полимер превращался в стеклоуглерод.
Известно, что при повышении температуры процесса размер кристаллитов стеклоуглерода растет до определенной отметки, после чего выходит на «плато». При увеличении размера кристаллита свойства этого материала, а именно твердость и плотность, улучшаются. Выяснилось, что массив нанотрубок влияет на процесс роста кристаллитов, и снижает температуру, при которой рост прекращается на 200 градусов.
В будущем исследователи планируют увеличить долю нанотрубок в исходном сырье с одного процента до 20, и проверить, как это повлияет на процесс получения материала, а также его конечные свойства.
Недавно группа ученых из Китая и США заявила об открытии новой формы углерода. Они подвергли стеклоуглерод давлению в 250 тысяч атмосфер, из-за чего материал образовал графеноподобную структуру, в некоторых местах которой листы углеродных атомов «сшивались» между собой за счет измененной гибридизации. Полученный материал оказался прочным и твердым, но в то же время эластичным.
Григорий Копиев
При каждом нажатии он меняет структуру, не забывая о предыдущих изменениях
Физики создали механический метаматериал с эффектом памяти, который можно использовать как примитивный счетчик до десяти. Этот материал представляет собой массив из десяти деформируемых ячеек, каждая из которых может находиться в одном из двух состояний, меняющихся при нажатии. При этом предыдущих изменений материал не забывает. В будущем счетчики с подобной конструкцией могут оказаться полезными для мягкой робототехники и умных сенсоров, пишут ученые в Physical Review Letters. Свойства метаматериалов определяются в первую очередь не химическим строением, а геометрической микроструктурой (например, расположением слоев различных веществ или периодичностью атомной решетки) и для них характерны аномальные значения различных физических параметров. Например, если растягивать в продольном направлении ауксетики, обладающие отрицательным значения коэффициента Пуассона, то в перпендикулярном направлении они расширяются (в то время как обычные материалы сжимаются). Ученые работают и над метаматериалами, обладающими памятью: они запоминают воздействие и реагируют на него сменой физических свойств. Например, если нагреть полимер с памятью формы, он вернет исходную (до деформации) форму. Однако такие материалы запоминают лишь начальное состояние, запомнить несколько последовательно меняющихся состояний им не под силу. Физики Мартин ван Хеке (Martin van Hecke) и Леннард Квакернак (Lennard Kwakernaak) из Лейденского университета разработали метаматериал, у которого память о предыдущих деформациях не сбрасывается. Храня информацию о предыдущих воздействиях, такой материал фактически способен считать: он запоминает каждое нажатие, последовательно меняя свою структуру. Ученые сделали материал на 3D-принтере из стоматологической силиконовой смеси для слепков. Он состоит из отдельных ячеек, каждая из которых включает в себя две балки: одну тонкую и одну толстую. Тонкая балка может изгибаться либо влево, либо вправо. Толстая балка служит перегородкой, отделяя ячейки материала друг от друга. Значение критической деформации для толстой и тонкой балок различны, поэтому одного нажатия достаточно для сгибания тонкой балки и частичной деформации толстой. Наличие толстой балки также не дает деформироваться тонкой балке в соседней ячейке. Материал считает следующим образом. В начальном состоянии {000...0} все тонкие балки изогнуты влево. При каждом изменении направления изгиба тонкой балки 0 меняется на 1. Превышая первым нажатием критическую деформацию тонкой балки, систему выводят в состояние {100...0}. После каждого следующего нажатия крайняя слева балка изгибается в правую сторону. Толстая балка при этом не деформируется, но за счет конструкции сгибает следующую тонкую. То есть система копирует состояние изогнутой вправо тонкой балки (1) с каждым нажатием на одну ячейку правее. В терминах нулей и единиц, подсчет можно записать как {000...0} → {100...0} → {110...0}→··· → {111...1}. До скольки может досчитать материал, зависит от числа ячеек и начального состояния системы, память метаматериала сохраняется до конца подсчета. По словам авторов работы, такой метаматериал с эффектом памяти фактически представляет собой простейший компьютер, который можно запрограммировать на счет с любого начального числа. Его работу ученые проверили, фиксируя значения критических деформаций и начиная счет с различных начальных чисел. Материаловеды отмечают, что такой счетчик из метаматериала можно изготовить и из других веществ, например каучука или полиуретана. В будущем из аналогичных ячеек ученые планируют собирать и двумерные массивы, на которых можно будет проводить более сложные вычислительные операции Метаматериалы хороши не только в счете: они помогают решать уравнения со скоростью света, а еще их можно превратить в непрерывные кристаллы времени.