Ученые из Университета Райса создали асимметричный двумерный материал. Они заменили часть атомов в двумерном диселениде молибдена таким образом, что с одной его стороны находятся только атомы селена, а с другой — серы. Исследование опубликовано в журнале ACS Nano.
Дихалькогениды переходных металлов — класс материалов состава MX2, в которых M — переходный металл (как правило, молибден или вольфрам), а X — халькоген (как правило, сера, селен или теллур). Они могут образовывать монослои подобно тому, как атомы углерода могут образовывать монослой в виде графена. Это вызывает интерес ученых, ведь двумерные материалы могут проявлять свойства, не характерные для их объемных аналогов того же химического состава.
Обычно в таких соединениях атомы металла располагаются внутри слоя, а халькоген снаружи. Исследователи решили воспользоваться этим, и создали материал, в котором каждая сторона монослоя состоит из разных халькогенов. В данном случае они выбрали диселенид молибдена, и решили заменить часть селена в нем на серу. Ученые точно подобрали температуру химического осаждения из газовой фазы таким образом, чтобы ее было достаточно для замены атомов с одной стороны плоскости, но недостаточно полной замены всего селена из материала на серу.
В итоге исследователи получили трехслойный «сендвич», в котором первый слой составляют атомы селена, над ними располагаются атомы молибдена, а верхний слой состоит из атомов серы. Из-за такого несимметричного строения материал обладает собственным электрическим полем, а также может служить в качестве катализатора для производства водорода с помощью электролиза. Ученые отмечают, что использованный ими способ получения можно адаптировать и для других подобных материалов.
Многие двумерные материалы неустойчивы на воздухе. Физики из лаборатории Андрея Гейма в Университете Манчестера разработали технологию, которая позволяет «ламинировать» монослои и защищать их от воздействия воздуха.
Григорий Копиев
Он хорошо активировал остеогенные клетки
Норвежские ученые разработали прототип костного трансплантата из аморфного фосфата кальция, который они получили из гидроксиапатита и яичной скорлупы. Он показал крайне хорошую иммуносовместимость и активацию остеогенных клеток в тканевых моделях. Исследование опубликовано в журнале Smart Materials in Medicine. В качестве трансплантата для замещения дефектов кости можно использовать кусок другой кости того же человека (аутологичный трансплантат), другого человека (аллогенный трансплантат), животного (ксеногенный трансплантат) или синтетические материалы. Несмотря на то, что аутогенные и аллогенные костные трансплантаты — золотой стандарт в таких операциях — содержат белки и клетки, которые способны формировать новую костную ткань, ограниченное количество доноров и риск переноса инфекции, равно как и техническая сложность аутогенной трансплантации, ограничивает применение этих методов. Изготовление ксеногенных полусинтетических трансплантатов сопряжено с высокими затратами на изготовление и с большими объемами медицинских отходов. Хаавард Йостейн Хауген (Håvard Jostein Haugen) из Университета Осло вместе с коллегами придумал концепцию синтетического костного трансплантата, который должен решить все эти проблемы. Они разработали метод изготовления аморфного фосфата кальция — основы искусственного синтетического костного трансплантата — с помощью синтетического гидроксиапатита и яичной скорлупы. Для этого яичную скорлупу сначала нагревали до 900 градусов Цельсия в течение часа, чтобы избавиться от органического компонента и превратить карбонат кальция (CaCO3) в оксид кальция (CaO). Полученные 5,55 грамма оксида кальция добавляли к 600 миллилитрам деионизированной воды и перемешивали со скоростью 200 оборотов в минуту. Затем к полученной суспензии добавляли 12,47 миллилитра раствора H3PO4, снова перемешивали с большей скоростью и вливали 91,5 миллилитра гидроксида натрия. Выпавший белый осадок фильтровали и промывали, а затем в пластиковых контейнерах погружали в жидкий азот. Физико-химические свойства полученного аморфного фосфата кальция оказались схожи с контрольным гидроксиапатитом, однако в экспериментальной версии ученые наблюдали большую устойчивость к рекристаллизации, которая затрудняет процесс приживления искусственной ткани к живой. Кроме того, цитотоксичность и гемолитическая активность частиц экспериментального фосфата кальция была не выше (а в некоторых тестах даже ниже), чем у контрольного материала. Также он проявлял достаточную иммуносовместимость. В двух- и трехмерных моделях мышиного зубного сосочка — эмбрионального зачатка зуба — частицы экспериментального фосфата кальция проявляли лучшую, по сравнению с контролем, активацию остеогенных клеток, которая оценивалась по экспрессии белков, ответственных за построение внеклеточного матрикса костной ткани (как органического, так и неорганического). Благодаря этому модели начинали приобретать структуру, напоминающую костную ткань. Это исследование показывает, что у яичной скорлупы как источника аморфного фосфата кальция есть потенциал использования в качестве костного полусинтетического трансплантата. При этом при его производстве практически не остается отходов. Если дефект кости небольшой, то можно воспользоваться титановыми пластинами в качестве имплантатов. Ученые придумали, как усовершенствовать их: они нанесли на них биопленку из бактерии Lactobacillus casei. Это помогло усилить регенерацию кости и защитить ее от метициллинрезистентного золотистого стафилококка.