Британские и немецкие ученые уточнили механизм восстановления спинного мозга рыбы данио-рерио после повреждения. Оказалось, что в этом процессе важную роль играет канонический сигнальный путь Wnt и синтез коллагена XII. Результаты работы опубликованы в журнале Nature Communications.
После травмы спинного мозга в месте повреждения быстро формируется сложный соединительнотканный внеклеточный матрикс. У большинства позвоночных, включая всех млекопитающих, этот матрикс препятствует регенерации нервных волокон. В отличие от них, матрикс данио-рерио, а также некоторых других рыб и саламандр, создает благоприятную среду для прорастания аксонов, что обеспечивает восстановление спинного мозга и, как следствие, двигательных функций. Ранее было показано, что за процесс формирования клеточного моста отвечает CTGFa (фактор роста соединительной ткани а), а рост поврежденных аксонов регулируется серотониновыми рецепторами 5-HT1A, однако другие биохимические механизмы регенерации изучены не были.
Чтобы разобраться в этих механизмах, сотрудники Эдинбургского, Дрезденского технического и Ульмского университетов проследили за восстановлением поврежденных аксонов спинного мозга у личинок и взрослых особей данио-рерио с помощью иммуногистохимических методов и использованием трансгенных организмов, отростки нейронов и глии которых экспрессировали флуоресцирующие белки разных цветов.
Выяснилось, что уже через сутки после травмы в спинном мозге рыб начинали формироваться аксональные мосты (глиальные отростки появлялись позже), что сопровождалось постепенным восстановлением двигательных функций. При этом аксоны регенерировали в тесной взаимосвязи с внеклеточным матриксом, что свидетельствует о его важности для этого процесса.
Дальнейшие наблюдения показали, что в месте повреждения спинного мозга активируется канонический (зависимый от бета-катенина) внутриклеточный сигнальный путь Wnt, который регулирует эмбриональное развитие, дифференцировку клеток и принимает участие в развитии злокачественных опухолей. Активация этого пути наблюдалась преимущественно в фибробластоподобных клетках матрикса, но не в нервной ткани, что не было описано ранее. Искусственное подавление активации Wnt в клетках матрикса препятствовало эффективной регенерации нервных волокон, в нервной ткани активность этого сигнального пути существенной роли не играла.
Анализ экспрессии генов, кодирующих фибронектины и цепи коллагена (основные компоненты внеклеточного матрикса), показал, что активация пути Wnt/бета-катенина приводит к продукции фибробластоподобными клетками коллагена XII и его накоплению в месте повреждения. При этом рост восстанавливающихся аксонов происходил вдоль сформированных в матриксе продольных волокон коллагена XII. Подавление синтеза этой формы коллагена препятствовало восстановлению спинного мозга, а повышение ее экспрессии в обход сигнального пути Wnt/бета-катенина оказалось достаточным для регенерации аксонов. Таким образом, основным эффектом активации Wnt, отвечающим за восстановление спинного мозга, оказалась именно продукция коллагена XII.
В последующих экспериментах исследователи намерены проверить, поможет ли включение сигнального пути Wnt/бета-катенина и стимуляция синтеза коллагена XII восстановить поврежденные аксоны спинного мозга у других животных.
Небольшого, но заметного восстановления функций после травмы спинного мозга недавно удалось добиться у человека с помощью виртуальной реальности, нейроинтерфейса и роботизированного экзоскелета, однако говорить о серьезном прорыве в этой области пока не приходится.
Олег Лищук
Он повышает синтез высокомолекулярной гиалуроновой кислоты
Американские и российские исследователи обнаружили, что трансгенные мыши с повышенной экспрессией гена синтазы гиалуроновой кислоты от голых землекопов меньше подвержены спонтанному и индуцированному раку, дольше живут и дольше сохраняют здоровье. Кроме того, у таких животных значительно снижен уровень воспаления в различных тканях. Отчет о работе опубликован в журнале Nature. Голые землекопы (Heterocephalus glaber) выделяются среди грызунов крайне высокой продолжительностью жизни (в неволе — более 40 лет). Кроме того, у них слабее работают рецепторы внутреннего уха и механизмы торможения в нервной системе, зато замедлено клеточное старение и короче иммунная память (из-за чего у них больше наивных лимфоцитов для реакции на новые инфекции). Одно из главных отличий голых землекопов от других млекопитающих состоит в том, что они практически не болеют раком. Как было показано ранее, это связано с высоким содержанием в их тканях высокомолекулярной гиалуроновой кислоты. Этот гликозаминогликан составляет основу внеклеточного матрикса, участвует в пролиферации и миграции клеток, а также влияет на прогрессирование опухолей, причем его свойства зависят от молекулярной массы — высокомолекулярный обладает защитными свойствами, низкомолекулярный — наоборот. Голые землекопы продуцируют гиалуроновую кислоту с крайне высокой молекулярной массой (более 6,1 мегадальтона), которая оказывает мощную цитопротекцию. Чтобы проверить, производит ли она схожий эффект у других видов животных, сотрудники Университета Рочестера, Гарвардской медицинской школы, Калифорнийского университета в Лос-Анджелесе и Московского государственного университета под руководством Андрея Селуанова (Andrei Seluanov) и Веры Горбуновой (Vera Gorbunova) создали трансгенных мышей с управляемой повышенной экспрессией гена синтазы 2 гиалуроновой кислоты голого землекопа (nmrHas2). У самок и самцов таких животных наблюдалось повышенное содержание высокомолекулярной гиалуроновой кислоты в мышцах, сердце, почках и тонкой кишке; низкое — в печени и селезенке, утилизирующих ее. Тем не менее оно было ниже, чем у голых землекопов, что, вероятно, связано с более высокой активностью гиалуронидазы у мышей. Наблюдения в когортах из 80–90 животных показало, что экспрессирующие трансген nmrHas2 мыши умирают от спонтанного рака реже, чем обычные (57 против 70 процентов). Эта разница была еще заметнее у пожилых (старше 27 месяцев) животных — 49 против 83 процентов. В эксперименте по химической индукции кожного канцерогенеза нанесением 7,12-диметилбензантраценом (DMBA) и форбол-12-миристат-13-ацетатом (TPA) число папиллом на 21-й неделе от него у трансгенных мышей было почти вдвое меньше, чем у обычных. От пола животных подверженность раку не зависела. Масса тела животных из обеих групп в течение жизни не различалась. При этом экспрессирующие nmrHas2 мыши жили дольше, чем обычные — медианная продолжительность жизни у них была на 4,4 процента, а максимальная — на 12,2 процента больше. У животных женского пола сильнее различалась медианная продолжительность жизни (на девять процентов), а мужского — максимальная (на 16 процентов). Оценка эпигенетического возраста по паттернам метилирования ДНК в печени в возрасте 24 месяцев показала, что у трансгенных мышей он примерно на 0,2 года меньше хронологического. Животные из основной группы жили не только дольше жили, но и дольше оставались здоровыми. У них медленнее, чем в контрольной группе, возрастал интегральный индекс немощности (frailty index), который рассчитывается по 31 физиологическому показателю, и они в пожилом возрасте сохраняли подвижность и координацию движений в тесте на ротароде. Кроме того, у трансгенных самок замедлялось развитие остеопороза. Анализ транскриптомов различных органов и тканей экспрессирующих nmrHas2 пожилых мышей выявил особенности, присущие молодым животным, и пониженный уровень воспаления, связанного с возрастом. Молекулярные исследования показали, что высокомолекулярная гиалуроновая кислота производит противовоспалительные и иммунорегулирующие эффекты, а также предохраняет клетки от окислительного стресса. Кроме того, она стимулирует барьерную функцию кишечного эпителия, сохраняет стволовые клетки кишечника и поддерживает оптимальный состав кишечной микробиоты, что дополнительно способствует снижению возрастного воспаления. Таким образом, высокомолекулярная гиалуроновая кислота, произведенная трансгеном nmrHas2, продлила жизнь мышей и сохранила их здоровье в пожилом возрасте, подавляя возрастные воспалительные реакции. Это значит, что эволюционные адаптации долгоживущих животных, таких как голый землекоп, можно искусственно воспроизвести у других видов — возможно, и у человека — с пользой для их здоровья. Также полученные результаты указывают на потенциал клинического применения высокомолекулярной гиалуроновой кислоты для лечения возрастных воспалительных заболеваний кишечника и других органов, заключают авторы работы. В 2016 году исследователи из Великобритании, Германии и ЮАР выяснили, что низкая болевая чувствительность голых землекопов связана с мутацией гена одного из рецепторов воспринимающих боль нейронов. Годом позже американские, немецкие, британские и южноафриканские ученые показали, что эти животные могут долго обходиться без кислорода — в эксперименте они выжили 18 минут в атмосфере чистого азота, после чего восстановили аэробный метаболизм.