Физики из Германии и США создали лазер с рекордно малой шириной спектральной линии — менее 10 миллигерц. Такой излучатель может улучшить точность оптических атомных часов, спектроскопии и других научных инструментов. Работа опубликована в журнале Physical Review Letters, также доступен ее препринт на сайте Arxiv.org.
Обычные источники света излучают целый спектр цветов. Лазеры отличаются от них своей монохроматичностью. Идеальный лазер должен иметь одну частоту (или длину волны) излучения. Существующие лазеры считаются монохроматическими источниками излучения, то есть испускают излучение с абсолютно точной частотой, но на самом деле имеют небольшую ширину спектральной линии. У хороших широко используемых лазеров спектральная ширина может измеряться килогерцами. Поскольку частота видимого света измеряется сотнями терагерц, такой ширины вполне достаточно для большинства применений. Но некоторые научные измерения нуждаются в как можно более точных лазерных излучателях.
Разработанная учеными лазерная установка, испускающая свет с длиной волны 1542 нанометра, состояла из резонатора Фабри — Перо, выполненного из монокристаллического кремния. Благодаря такому выбору материала резонатор меньше подвержен тепловому шуму, который может снижать точность излучения.
Поскольку длина волны излучения зависит от расстояния между зеркальными поверхностями резонатора, ученые постарались убрать все возможные помехи: тепловые, вибрации и другие. Установка была специальным образом защищена от вибраций и звука. Помимо этого, исследователи постарались минимизировать влияние теплового шума, причем не только с помощью специального материала резонатора, но и за счет охлаждения установки до примерно -150 градусов Цельсия.
В совокупности, все эти меры позволили добиться того, что колебания длины резонатора не превышали десятков аттометров, то есть примерно в десять миллионов раз меньше диаметра атома водорода, а спектральная ширина линии оказалась рекордно низкой — около 8 тысячных герца. Это составляет около 4×10-17 от несущей частоты в 194 терагерца. Когерентность лазера оказалась такой, что испускаемый им свет пройдет практически десятикратное расстояние между Землей и Луной, прежде чем его колебания рассинхронизируется, то есть станут некогерентными. Ученые надеются, что дальнейшее совершенствование технологии позволит снизить ширину линии ниже 1 миллигерца.
Недавно были проведены первые испытания мощнейшего лазера на свободных электронах. Общая длина этой установки составляет почти три с половиной километра. Одним из применений такого лазера станет «съемка» изменений молекул в ходе химических реакций. Однако чаще лазеры используются не в научных целях. На днях Армия США провела испытания первого вертолета, вооруженного боевым лазером.
Григорий Копиев
Это поможет добывать руду и обрабатывать ядерные отходы
Европейские физики теоретически и экспериментально исследовали цикличные процессы всплытия и опускания на дно зерен арахиса в пиве, который называют «танец арахиса». Для этого они в течение двух с половиной часов снимали на камеру этот процесс в лаборатории. Анализируя эти результаты, ученые выяснили, что танец происходит из-за поверхностных свойств арахиса, на которых образование пузырьков предпочтительнее, чем на стенках стакана. Исследование опубликовано в Royal Society Open Science. В России распространен фокус, который показывают на вечеринках с шампанским. Для этого в полный бокал игристого напитка бросают изюминку, кусочек ананаса или дольку шоколада. Брошенное в жидкость тело сначала тонет, но затем всплывает под действием пузырьков газа, зародившихся на его краях. У поверхности пузырьки разрушаются и цикл повторяется. В аргентинских барах существует такая же традиция, только вместо шампанского там используют пиво, а вместо изюма — арахис. Там этот трюк получил название «танец арахиса». Несмотря на качественное понимание такого танца, физики плохо понимают его детали. Вместе с тем, такие процессы происходят не только на вечеринках или в барах, но и в природе: предполагается, что именно так плотный магнетит всплывает в магме. Похожим же образом горняки отделяют железо от руды. Разобраться в этом вопросе решили Луис Перейра (Luiz Pereira) из Университета Людвига Максимилиана и его коллеги из Англии, Германии и Франции. Для этого они провели экспериментальны с арахисом в пиве и подтвердили их результаты численными вычислениями. Физики наполняли резервуар размером 100 × 100 × 200 миллиметров одним литром лагера и опускали в него 13 обжаренных зерен арахиса Arachis hypogaea. Весь процесс они снимали на цифровую камеру. На начальном этапе все зерна плавали на поверхности из-за активного образования пузырей в перенасыщенном углекислом газом пиве. Примерно через 25-30 минут количество пузырьков уменьшалось и арахис начинал цикличное движение вверх и вниз под действием описанного выше механизма. Танец всех зерен прекратился примерно через 150 минут после начала эксперимента — количество газа, растворенного в пиве, опустилось ниже пороговой отметки. Для анализа результатов эксперимента авторы разбили задачу на три части: зарождение пузырьков, плавучесть и цикличность. Для этого им потребовалось знать капиллярные свойства системы, такие как плотность пива и газа, поверхностное натяжение, углы смачивания и так далее. Первое они рассчитали с помощью пивного онлайн калькулятора, второй — взяли из литературы, а для получения информации об углах ученым потребовалось провести дополнительные эксперименты по смачиванию пива стеклом и плоской частью арахиса. В результате физики смогли воспроизвести основные особенности поведения арахиса в пиве, которые они увидели в эксперименте. Так, они доказали, что арахис обладает поверхностью, на которой образование пузырей энергетически более выгодно, чем на стенках стакана. Если бы это было не так, танец арахиса был бы невозможен. Ученые отмечают, что арахис в пиве может служить модельной системой не только для задач геологии и добычи полезных ископаемых, но и в обработке ядерных отходов. Один литр пива — это не так много, когда речь идет о физическом эксперименте (впрочем, не только). То ли дело 30 литров! Именно столько потратили физики из Германии и Кореи, изучая стабильностью пивной пены при розливе «снизу-вверх».