Российские химики объяснили свечение грибов

Omphalotus olearius

Noah Siegel

Российские химики под руководством Ильи Ямпольского из Института биоорганической химии РАН описали механизм биолюминесценции грибов. Ученые не только установили структуру светящихся соединений, но и определили всю биохимическую цепочку, приводящую к их свечению. Также исследователи слегка варьировали структуру соединений, добившись разных цветов «грибного свечения». Исследование опубликовано в журнале Science Advances, кратко о нем сообщает пресс-релиз ИБХ РАН.

Биолюминесценция встречается у огромного количества самых разных представителей живой природы: кишечнополостные, насекомые, бактерии, растения, черви, рыбы, грибы и так далее. За это свечение отвечают определенные циклы химических реакций. Как правило, можно выделить три класса веществ, участвующих в этом процессе: люциферины (от латинского lucifer, «несущий свет»), люциферазы и оксилюциферины. Для возникновения свечения необходимо, чтобы фермент люцифераза инициировал окисление люциферина кислородом. В результате образуются возбужденные молекулы оксилюциферина, которые и испускают свет.

У различных типов организмов эти роли играют разные вещества. В XX веке было известно семь разных люциферинов, в 2014 году химикам удалось выделить восьмой люциферин — из сибирского почвенного червя. В 2015 году химики установили структуру люциферина грибов, однако полный механизм биолюминесценции был неизвестен.

В новой работе ученые описали превращения люциферина, приводящие к свечению грибов. Как рассказывают авторы, необходимым шагом было выяснить структуру оксилюциферина — продукта окисления исходной молекулы. Это требовало наработать достаточно большое его количество.

Так как реакция окисления люциферина гриба до оксилюциферина требует белкового фермента, исследователям пришлось выделять люцииферазу из природного сырья — вьетнамского гриба Neonotopanus nambi. Химики смешивали люциферин и экстракт гриба в присутствии кислорода, тем самым воспроизводя природный механизм биолюминесценции. Однако оказалось, что продукт окисления люциферина был очень неустойчив. Химики определили его строение по тому, на какие фрагменты он распадался в процессе реакции.

Важную роль сыграл эксперимент, в котором химики окисляли люциферин в присутствии тяжелого изотопа кислорода — кислорода-18. Это позволило, в том числе, определить механизм реакции — оказалось, что один из промежуточных продуктов окисления — органический пероксид.

Молекула люциферина грибов (подчеркнем, что люциферины очень сильно отличаются друг от друга) состоит из двух основных частей: окисляемого пиранонового ядра (шестичленный гетероцикл с атомом кислорода в кольце) и неизменяемого ароматического фрагмента. Они соединены между собой мостиком из двух атомов углерода. Химики проверили, как изменятся свойства молекулы, если поменять в ней одно ароматичекое ядро на другое — например, поменять бензольное кольцо на индольный фрагмент или нафталиновый. Оказалось, это изменяет цвет свечения молекулы. Если исходный люциферин светится желто-зеленым при окислении, то, скажем, индольный меняет свою окраску на синий, а нафталиновый — на оранжевый.

Химики отмечают, что конечный продукт распада люциферина грибов — кофейная кислота, которая также встречается и у растений. Более того, она может превращаться обратно в исходный люциферин с помощью известных биохимических путей.

Владимир Королёв


Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.