Инженеры из Исследовательского института машинного оборудования Пекина до конца текущего проведут испытания прототипа комбинированного гиперзвукового двигателя для перспективных гиперзвуковых летательных аппаратов и первых ступеней ракет-носителей. Как пишет Aviation Week, на основе прототипа силовой установки планируется создать полноразмерный демонстратор технологий, летные испытания которого будут проведены не позднее 2025 года.
В настоящее время создание гиперзвуковых летательных аппаратов сопряжено с несколькими сложностями. Одной из главных является создание двигателя, который мог бы разгонять такой летательный аппарат от нуля километров в час до скорости гиперзвука (более пяти чисел Маха, или более 6,2 тысячи километров в час). Дело в том, что существующие сегодня разные виды двигателей могут работать только в своем относительно узком диапазоне скоростей.
В частности, двухконтурные реактивные двигатели, устанавливаемые на истребители, в силу своих конструктивных особенностей не могут разгонять самолет быстрее 2,2 числа Маха. В то же время, рабочие прототипы гиперзвуковых прямоточных воздушно-реактивных двигателей начинают стабильно работать на скоростях полета более четырех чисел Маха, когда становится возможным поддерживать сверхзвуковой воздушный поток сквозь силовую установку. Теоретическим пределом скорости для гиперзвукового двигателя являются 24 числа Маха.
Перспективный китайский комбинированный гиперзвуковой двигатель, как ожидается, сможет разгонять летательный аппарат от нуля до десяти чисел Маха. Разработка получила название TRRE (Turbo-aided Rocket-augmented Ram/scramjet Engine, турбированный ракетно дополненный прямоточный воздушно-реактивный/гиперзвуковой прямоточный воздушно-реактивный двигатель). В случае, если испытания прототипа силовой установки пройдут успешно, она станет первой практической реализацией двигателя такого типа.
В TRRE под единым корпусом размещены турбореактивный, ракетный и прямоточный воздушно-реактивный двигатели. Они имеют общие воздухозаборник и сопло с изменяемыми в зависимости от скорости полета и включенного двигателя сечениями. Внутри корпуса три типа двигателей отделены друг от друга, а воздушный поток между ними будет переключаться во время полета. Все двигатели будут работать на авиационном керосине. В ракетном двигателе в качестве окислителя для керосина будет использоваться жидкий кислород.
Во время разгона и на первом этапе полета в новом двигателе будет задействована низкоскоростная турбореактивная часть. Благодаря ей двигатель сможет разгонять летательный аппарат до двух чисел Маха. После этого воздуховод к турбореактивной части будет перекрываться, а воздушный поток будет переключаться на прямоточную воздушно-реактивную часть. В ней набегающий поток воздуха будет сжиматься за счет сужения воздуховода и поступать в камеру сгорания с прямым впрыском топлива.
Прямоточный двигатель получит воздуховод с изменяемым сечением, благодаря чему сможет стабильно работать как на сверхзвуковой, так и на гиперзвуковой скорости. На сверхвуковой скорости работе прямоточного двигателя будет помогать ракетный двигатель. На этом этапе силовая установка будет обеспечивать разгон до шести чисел Маха. После шести чисел Маха ракетный двигатель будет отключаться, а прямоточный воздушно-реактивный двигатель — переходить в гиперзвуковой режим с дополнительной подачей в камеру сгорания жидкого кислорода.
В настоящее время американская компания Lockheed Martin занимается разработкой разведывательного гиперзвукового беспилотного летательного аппарата SR-72. Его испытания планируется провести в середине 2020-х годов. Проект SR-72 был впервые представлен компанией Lockheed Martin в 2013 году. Перспективный аппарат, если его разработка будет завершена, по своим размерам окажется сопоставим с SR-71 Blackbird. Длина последнего составляла 32,7 метра, размах крыла — 16,9 метра, а высота — 5,6 метра.
Основу двигательной установки SR-72 составит турбореактивный двигатель, способный разгонять аппарат быстрее двух чисел Маха. Затем на двух числах Маха будет включаться сверхзвуковой прямоточный воздушно-реактивный двигатель, который будет разгонять аппарат до шести чисел Маха. По оценке компании, наибольшую сложность в проекте представляет диапазон от 2,2 до четырех чисел Маха с точки зрения обеспечения стабильности работы прямоточного двигателя и достаточной тяги.
Василий Сычёв
Она поможет трактористам снизить риск потери слуха
Корейские инженеры изучили природу и характеристики шума, попадающего в кабину работающего трактора воздушным путем. С помощью звукоизоляции щелей и испытаний на стенде в полубезэховой камере они добились снижения высокочастотной нагрузки на водителя почти вдвое. Исследование опубликовано в Scientific Reports. В некоторых профессиях существуют факторы риска, которые способствуют развитию тех или иных специфичных заболеваний. Известно, что водители тракторов имеют более высокие шансы потерять слух, нежели представители большинства других профессий. Сообщалось также, что изменение шума в кабине сказывается на производительности труда трактористов. По этой причине инженеры вместе с физиками активно ищут способы борьбы с этим вредным фактором. Существует два общих пути, по которым шум попадает в кабину: структурный и воздушный. Первый вызван вибрациями конструкционных элементов, из которых сделана кабина, и доминирует на частотах ниже 250 герц. Второй проникает через разнообразные щели и отверстия и как правило имеет высокие частоты. Несмотря на общее понимание того, как с ним бороться, в литературе нет данных о влиянии звукоизоляции на отдельные частоты воздушного шума. Неизвестно также, какие именно компоненты работающей техники вносят основной вклад в такой шум. Ответить на эти вопросы смогло исследование корейских инженеров под руководством Ён Джуна Пака (Young‑Jun Park) из Сеульского национального университета. Исследователи провели испытания с работающим трактором в полубезэховой камере и разобрались, из чего состоит воздушный шум, проникающий в кабину. Исследователи показали, что звукоизоляция щелей способна ощутимо снизить этот вредный фактор. Техника, использованная в эксперименте, обладала четырехцилиндровым дизельным двигателем мощностью 104,5 киловатта. Авторы проверяли шум от работы трактора на 16 передачах переднего хода, а также на нейтральной передаче. Для этого они размещали в салоне испытательный стенд с двумя микрофонами, имитирующими уши тракториста. Инженеры измеряли звуковое давление в обоих каналах в зависимости от показаний тахометра и усредняли его по шкале А . С ростом передачи шум немного возрастал от 87 до 89 децибел и был больше с правой стороны. Анализ спектрограмм показал, что основными источниками звука в кабине трактора были кратные частоты шума от двигателя, шум впуска и выпуска, шум шестерен трансмиссии и входной шестерни гидравлического насоса, а также шум шин. Наиболее целесообразным при этом было бороться со звуком на частотах, выше 500 герц. С помощью звуковой камеры исследователи выявили более 20 тысяч квадратных миллиметров площади, которую требовалось звукоизолировать. Она включала себя пространство между машинным отделением и приборной панелью, отверстие в задней части кабины и щель вокруг рычага стояночного тормоза. Авторы обработали эти места с помощью полиуретановой пены, резиновых втулок, а также двухмиллиметровой стальной пластины. Измерения показали, что такая процедура снизила шум в кабине в среднем на 4-6 децибел, что эквивалентно снижению звукового давления внутри кабины наполовину. Авторы считают, что их наработки позволят в будущем повысить безопасность и эффективность сельскохозяйственных работ. Шум мотора мешает не только водителю, но и окружающим. О том, как с этим борются на автогонках, мы рассказывали в материале «Тише едешь».