Физики из Института органической электроники и Института электронно-пучковых и плазменных технологий общества Фраунгофера разработали методику создания графеновых электродов большой площади для органических светодиодов (OLED). Прототипы светодиодов уже были испытаны на практике и оказались работоспособными. Основное применение технологии — гибкие светодиодные дисплеи, солнечные батареи и носимая гибкая электроника. О результатах сообщает пресс-релиз общества Фраунгофера (Германия).
Электронные и механические свойства графена делают его привлекательным для огромного спектра применений. Это оптически-прозрачный прочный материал, обладающий высокой электропроводностью. Однако, создание бездефектных листов графена — сложная технологическая задача. К примеру, метод отщепления графена скотчем, который использовали Андрей Гейм и Константин Новоселов в своей «нобелевской» работе, позволяет получать чешуйки материала очень малой площади. Более совершенные методы — химическое осаждение из газовой фазы — требуют тщательного подбора условий.
Как сообщает пресс-релиз, благодаря работе ученых впервые стало возможным производство работоспособных графеновых электродов для светодиодов. В своей работе материаловеды использовали химическое разложение метана на поверхности горячей (800 градусов Цельсия) медной пластины. Газ частично растворялся и разлагался в металле, формируя на его поверхности тонкий слой графена. Поверх него наносили полимерное покрытие и растворяли медь, после чего использовали получившийся электрод.
По словам авторов, первые продукты с графеновыми электродами могут быть выпущены уже через 2-3 года. В первую очередь они подходят для сенсорных экранов, например, гибких. Кроме того, графен можно применять в фотовольтаике, высокотехнологичных тканях и медицине.
Среди углеродных материалов, которым пророчили различные применения в электронике, можно еще выделить углеродные нанотрубки. Эти материалы обладают высокой подвижностью зарядов и считается, что они смогут стать основой для сверхбыстрых транзисторов. В 2016 году транзисторы на углеродных нанотрубках впервые обошли по своим характеристикам кремниевые приборы.
Владимир Королёв
Как развитие технологий позволило нащупать «топологическое решение» загадки шизофрении
Шизофрения — одна из самых загадочных и сложных болезней человека. Уже более ста лет ученые пытаются понять причины ее возникновения и найти ключ к терапии. Пока эти усилия не слишком успешны: до сих пор нет ни препаратов, которые могли ли бы ее по-настоящему лечить, ни даже твердого понимания того, какие молекулярные и клеточные механизмы ведут к ее развитию. О том, как ученые бьются с «загадкой шизофрении» мы уже неоднократно писали: сначала с точки зрения истории психиатрии, затем с позиции классической генетики (читателю, который действительно хочет вникнуть в суть проблемы, будет очень полезно сначала прочитать хотя бы последний текст). На этот раз наш рассказ будет посвящен новым молекулярно-биологическим методам исследования, которые появились в распоряжении ученых буквально в последние несколько лет. Несмотря на сырость методик и предварительность результатов, уже сейчас с их помощью получены важнейшие данные, впервые раскрывающие механизм шизофрении на молекулярном уровне.