Россияне помогли создать миниатюрный источник «раздевающего» излучения

Credit: ITMO University

Ученые из России, Великобритании и Литвы провели тестовые испытания приемопередатчика терагерцевого излучения размером с булавочную головку. Антенна состоит из нескольких полупроводниковых слоев с квантовыми точками. Описание эксперимента опубликовано в журнале Laser & Photonics Reviews.

Спектр частот терагерцевого излучения лежит между инфракрасным и сверхвысокочастотным диапазонами. Терагерцевое излучение проникает сквозь живые ткани, но практически не рассеивается в них, и поэтому, в отличие от рентгеновских лучей, не представляет опасности для здоровья. Это свойство обеспечивает широкий спектр применения этого диапазона излучения: например, оно используется в системах безопасности для сканирования багажа и людей, с его помощью можно разглядеть спрятанные под одеждой металлические, керамические, пластиковые и другие предметы на расстояниях до десятков метров (поэтому терагерцовое излучение часто называют «раздевающим»). В медицинскую практику начинают внедряться терагерцевые томографы, с помощью которых можно исследовать верхние слои тела — кожу, сосуды, мышцы — до глубины в несколько сантиметров. Это нужно, например, для получения изображения опухолей. Еще одно возможное применение — получение снимков поверхностей, скрытых под слоями штукатурки или краски, что, в свою очередь, делает возможным «бесконтактное» восстановление первоначального вида произведений живописи.

Существующие генераторы терагерцевого излучения используют конверсию инфракрасных лазерных лучей в терагерцевые. Такая конверсия выполняется при помощи сложных систем, включающих фотоантенны, полупроводниковые кристаллы или диоды — как правило, это дорогие массивные энергозатратные системы, которые, к тому же, работают только при низких температурах. Специфика их работы накладывает ограничения на максимальную мощность лазерного излучения и максимальную амплитуду прикладываемого напряжения во избежание перегрева и/или электрического пробоя.

Новое устройство работает на базе квантовых точек — частиц полупроводника размером в несколько нанометров, широко используемых в нанотехнологиях. Под воздействием электричества или света частица испускает свет конкретной частоты в зависимости от своих размеров и формы, и таким образом допускает высокоточное управление своими свойствами — поэтому квантовые точки иногда называют искусственными атомами.


Антенна состоит из нескольких активных слоев квантовых точек, размещенных поверх отражателя Брэгга. Импульсный лазерный свет пропускается сквозь активные слои между смещенными электродами антенны, и поглощается полупроводником. Накачка полупроводниковой структуры лазерным светом разных уровней энергии вызывает образование фототоков с параметрами, которые зависят от свойств соответствующего возбужденного активного слоя квантовых точек. Взаимодействие фототоков вызывает рекомбинацию радиационных и нейтральных процессов внутри полупроводника, таким образом, процесс конверсии оптического сигнала в терагерцевый происходит за счет управляемых рекомбинаций пар электрических зарядов в полупроводнике, после чего полученный фототок передается встроенной микро-антенной как терагерцевое излучение в полусферические линзы.

Одним из ключевых моментов эксперимента стало использование единого состава полупроводника как для источника импульсной лазерной накачки, так и для терагерцевого излучателя — в такой конфигурации ученые наблюдали дополнительное излучение и абсорбцию энергии, выполняемых, соответственно, лазером и антенной. Это «возрождение» эффективного терагерцевого сигнала, которое было зафиксировано при достижении энергией уровня возбуждения соответствующего слоя квантовых точек, стало самым важным новшеством проведенного эксперимента.


Ученые отмечают, что новая антенна не только позволяет генерировать терагерцевое излучение при комнатной температуре, но и значительно сокращает размеры источника излучения, что дает возможность объединить антенну с компактным инфракрасным лазером. Проведенные эксперименты показали, что созданное устройство выдерживает десятикратное увеличение интенсивности входного лазерного импульса по сравнению с традиционными терагерцевыми генераторами.

Исследователи предполагают, что новое устройство может быть использовано в высокоскоростных системах связи, а также в компактных терагерцевых сканерах, которые можно использовать для получения динамических изображений глубоких слоев кожи, сканирования эмбриона, мозга, а также внутренних органов и опухолей.


Надежда Бессонова

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.