Ученые из Южной Кореи объяснили, как свет попадает в корни растений. Оказывается, он проходит из стеблей и листьев в корни с помощью проводящих тканей, то есть стебли, фактически, выполняют роль оптоволокна. В корнях свет стимулирует белок фитохром В, который, в свою очередь, активирует белок, помогающий росту корней. Исследование опубликовано в Science Signaling.
В ранних исследованиях ученые показали (1, 2), что свет влияет на рост подземной корневой системы растений. Так, в побегах и корнях растений содержится светочувствительный белок фитохром, существующий в двух формах, А и В, одна из которых поглощает свет в красном диапазоне, вторая — в дальнем красном диапазоне. Эксперименты показали, что фитохром, содержащийся в побегах растений, активирует транспорт сигнальных молекул из стебля в корневую систему. Эти молекулы способствуют росту боковых ответвлений корня. В другой работе было показано, что при облучении корней красным светом фитохром стимулирует их рост. Но как свет попадает в корни растений исследователи не знали. Высказывались разные предположения — например, что корни напрямую получают свет через почву. По мнению авторов статьи, такая гипотеза не кажется убедительной, так как свет может проникать в почву на несколько миллиметров, к тому же проницаемость разных почв разной. Согласно другому предположению, свет попадает из стебля и листьев в корневую систему растения по проводящим тканям.
В новой работе авторы использовали в качестве модельного организма резуховидку Таля (Arabidópsis thaliána). Они изучали растения, мутантные по некоторым генам, в том числе, по гену фитохрома, и растения «дикого типа», без мутаций. Чтобы понять, как свет влияет на корни Arabidópsis и как фитохром стимулирует их рост, авторы выращивали растения на свету, помещали в темное место на определенные периоды времени, облучали светом корни резуховидок или помещали в темноту только листья. Кроме того, чтобы проверить гипотезу о светопроводящих тканях, биологи подсвечивали ткани стебля светом видимого и инфракрасного спектров. Источник света соединяли с помощью канюли (гибкой полой иглы) с волокнами растения, а детектор на концах корней регистрировал, проходит свет в корни или нет. Чтобы показать, что корни получают свет не через почву, исследователи закрывали землю вокруг растения фольгой.
Оказалось, что свет проходит по стеблям растений в корни, причем излучение в инфракрасном диапазоне растительные ткани проводят гораздо лучше, чем свет видимой части спектра. Свет, поступивший из стеблей и листьев, активирует фитохром В, содержащийся в корнях, а фитохром активирует синтез, а затем помогает стабилизировать сигнальный белок HY5, который стимулирует рост корней.
Резуховидка Таля (Arabidópsis thaliána) используется биологами как модельный организм в молекулярно-биологических, генетических и физиологических исследованиях, так как у этого растения очень короткий жизненный цикл — шесть недель, а также небольшой геном. Арабидопсис часто используется в космических исследованиях. Так, резуховидку выращивали на советской космической станции Салют-7, авторы проекта Mars One планируют выращивать ее после высадки на Марс.
Британское Микробиологическое общество (Microbiology Society), которое выпускает пять научных журналов, объявило, что останавливает работу со статьями, при подготовке которых использовалось российское бюджетное финансирование или с участием авторов, аффилированных с организациями, публично поддержавшими боевые действия на территории Украины. Эта пауза продлится до момента, когда украинские микробиологи смогут безопасно продолжить работу, говорится в заявлении совета общества.