Физики научились охлаждать водород «причесыванием»

Физики из Университета Калифорнии разработали новый метод лазерного охлаждения атомов, который позволит снизить температуру частиц до десятитысячных долей кельвина. Этот метод впервые позволит ученым работать с холодными атомами водорода, углерода, азота и кислорода, охлаждение которых невозможно традиционными методами из-за отсутствия ультрафиолетовых лазеров с необходимыми характеристиками. В его основе лежат оптические гребенки — лазерное излучение, спектр которого состоит из множества узких полос. Авторы надеются, что новая методика позволит моделировать астрофизические процессы и искать отличия в свойствах водорода и антиводорода. Исследование опубликовано в журнале Physical Review X, кратко о нем сообщает Physics.

Захваченные в ловушку холодные атомы — удобный модельный объект, на котором физики изучают различные явления в твердых телах, такие как сверхпроводимость или конденсация Бозе — Эйнштейна. Главное их преимущество — отсутствие тепловых колебаний, которые «размывают» сигнал в реальных системах. Ключевым в создании таких систем является процесс охлаждения атомов до температур вблизи абсолютного нуля. Существующие методики используют, как правило, доплеровское лазерное охлаждение.

Суть доплеровского охлаждения состоит в следующем. Облако предварительно охлажденного газа помещают в камеру на перекрестье лучей лазеров. Каждый фотон используемых лазеров несет в себе энергию немного меньшую, чем та, которая требуется атому газа для перехода в возбужденное состояние. Из-за этого при поглощении кванта света атом тратит часть своей кинетической энергии на переход в возбужденное состояние и уменьшает свою скорость. Спустя короткий промежуток времени атом испускает фотон обратно, переходя в невозбужденное состояние. Этот цикл повторяется многократно, в результате чего температура атомов газа в облаке опускается до миллионных долей кельвина. Кроме того, за счет интерференции в системе возникает магнитооптическая ловушка, которая заставляет атомы формировать периодические структуры. 

Однако такой способ охлаждения удобен не для всех атомов. Традиционно физики используют его для щелочных и щелочноземельных элементов (например, K, Rb, Cs, Ba, Sr), также им можно охлаждать некоторые переходные и непереходные металлы. Но, к примеру, охлаждение водорода, углерода или кислорода требует лазеров с жестким ультрафиолетовым излучением — подобные устройства с непрерывным излучением и узкими спектральными диапазонами недоступны. Вместе с тем, существуют такие лазеры, работающие в импульсном диапазоне. Правда, подобные устройства почти не используются для охлаждения атомов — это связано с их спектральными характеристиками. Спектр таких лазеров состоит из набора тонких линий, расположенных на равных расстояниях друг от друга — ширина этого набора линий превышает ширину спектральных линий непрерывных лазеров, используемых для охлаждения. 

В новой работе авторы воспользовались массивом спектральных линий — оптической гребенкой — как преимуществом импульсного лазера. Когда атомы поглощали фотон, относящийся к определенному «зубчику» гребенки, они переходили на виртуальный уровень возбуждения. Для перехода в первое возбужденное состояние атом должен был поглотить фотон из другого «зубчика». Такой двухступенчатый процесс заменял традиционное поглощение одного фотона в доплеровском охлаждении. Ученые отмечают, что в предыдущих попытках другие группы физиков использовали для охлаждения лишь несколько зубчиков из всей системы, а в их новом эксперименте используется вся гребенка.

Работоспособность методики авторы проверили на традиционном для подобных экспериментов рубидии. Ученые охлаждали облако атомов с помощью коротких импульсов оптических гребенок продолжительностью 2-5 пикосекунд. В результате удалось достигнуть температуры атомов в 57 микрокельвинов. По словам физиков, недостатком метода является небольшая скорость поглощения фотонов (а значит и охлаждения) — в 1000 раз меньше, чем в традиционных методах. Это означает, что для эффективного охлаждения атомов потребуется отдельная стадия предохлаждения, методику которой еще предстоит отработать. 

Авторы предполагают, что с помощью новой методики удастся создать магнитооптическую ловушку для антиводорода — вещества, атомы которого состоят из позитрона и антипротона. Согласно современным представлениям, антиводород должен обладать точно такими же энергиями электронных переходов, как и водород. Измеряя спектры атомов антиводорода, захваченных в ловушку, физики смогут экспериментально проверить CPT-симметрию, одно из фундаментальных свойств квантовой теории поля.

Ранее мы сообщали о необычных явлениях, наблюдаемых при охлаждении атомов другим способом — взаимодействием с нейтральным холодным газом. Оказалось, что при попытке охладить захваченные в оптическую ловушку атомы последние могут сохранять высокую температуру (до 10 кельвинов) даже при субкельвиновой температуре охлаждающего газа.

Владимир Королёв

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Австралийцы подсчитали процент инцестов в Великобритании