Ученые из Северо-Западного Университета разработали новый тип пластика для 3D-принтеров, который можно использовать для печати эластичных искусственных костей. Он не вызывает имунного ответа, самостоятельно заполняется клетками и окостевает естественным образом. Описание нового материала опубликовано в журнале Science.
Материал для искусственной кости создан на основе двух веществ: минерала гидроксиапатита, который присутствует и в настоящих костях, обеспечивая их жесткость, и полиэфира поликапролактона — биосовместимого полимера, уже широко использующегося в медицине. Полимерная часть составляет всего десять процентов нового материала по массе, однако этого оказывается достаточно для обеспечения его высокой эластичности. «Искусственные кости» на основе материала можно растягивать без разрушения структуры на 30-60 процентов длины.
Помимо эластичности, материал обрадает высокой пористостью — микропустоты составляют до половины объема «искусственной кости». Это позволяет клеткам проникать во внутреннюю структуру материала и заселять ее, осуществляя таким образом регенерацию. В искусственных костях при этом появляются кровеносные сосуды и начинает расти настоящая костная ткань. Со временем поликапролактон разрушается до капроновой кислоты, воды и CO2, а внутри имплантата остается только минеральная часть и собственные клетка пациента.
Ученые протестировали новый материал на мышах и крысах. У последних с помощью имплантатов на основе нового материала медики пытались вылечить перелом позвоночника, что в результате удалось сделать даже эффективнее, чем с помощью донорских графтов (кусочков настоящей кости, которую используют как имплантат). Отдельный тест материала был сделан и на макаках, которым вживляли искусственную кость из нового материала вместо одного из фрагментов черепа. По словам авторов статьи, ни в одном случае не наблюдалось воспаления или какого-то иного нежелательного ответа от иммунной системы. Кровеносные сосуды хорошо проникали в имплантаты и заселяли их живыми клетками.
Подобные искусственные материалы, которые имплантируются на место поврежденного органа и затем заселяются собственными клетками пациента, медики называют скеффолдами, т. е. каркасами. Обычно в составе скеффолдов присутсвуют специальные факторы роса, которые должны стимулировать рост клеток. Иногда же в состав скеффолда добавляют стволовые клетки — эта технология исследуется, но пока не применяется в клинике. В данном случае авторам материала удалось добиться хорошего заживления даже без использования факторов роста (таких как BMP) и стволовых клеток.
В области протезирования костей основными недостатками искусственных скеффолдов являются излишнаяя хрупкость и повышенный риск развития воспаления. Альтернативный подход подразумевает использование собственных костных тканей пациента, полученных с другого органа, однако эта технология тоже не лишена серьезных недостатков. Она требует проведения сложной операции, что занимает много времени, но не всегда гарантирует результат. Получение же искусственных костей с помощью 3D-печати не только гораздо проще, но и несопоставимо быстрее — создание иплантата, по словам авторов статьи, занимает всего около 5 часов.
На данный момент говорить о полной безопастности технологии нельзя, так как она опробована только на животных, к тому же время наблюдений пока не превышает нескольких недель. Однако все компоненты системы уже использовались в медицине и пока не вызвали серьезных осложнений.
Александр Ершов
Он нажимает на кнопки сенсорных терминалов самообслуживания вместо пользователя
Инженеры разработали прототип устройства, которое помогает слабовидящим пользователям взаимодействовать с сенсорными экранами терминалов и торговых автоматов. Небольшой вращающийся вокруг своей оси робот под названием Toucha11y с камерой и выдвижным стилусом прикрепляется к экрану и распознает интерфейс, после чего передает информацию на смартфон пользователя. В результате пользователь, используя встроенные функции помощи смартфона выбирает нужные команды, а робот нажимает за него на соответствующие элементы интерфейса. Доклад представлен на конференции Conference on Human Factors in Computing Systems 2023. Многие торговые автоматы, терминалы самообслуживания и банкоматы сегодня оснащены сенсорными экранами. При этом они крайне редко оснащены голосовым управлением, что становится серьезным препятствием для слепых и слабовидящих — зачастую они не в состоянии воспользоваться устройствами без посторонней помощи. Инженеры из Мэрилендского университета во главе с Хуай Шу Пэном (Huaishu Peng) предложили способ решения этой проблемы в виде мобильного приложения и работающего с ним в паре небольшого робота под названием Toucha11y, который прикрепляется к экрану терминала. Робот массой 160 грамм оснащен тремя присосками для прикрепления к экрану терминала. Корпус может поворачиваться вокруг своей оси с помощью электромотора, а в верхней части размещена камера, наклоненная на 45 градусов вниз. Одноплатный компьютер Raspberry Pi Zero внутри отвечает за работу механики и за связь с сервером, на котором производятся вычисления. Чтобы начать работу с Toucha11y, пользователь закрепляет его на тачскрине терминала. После чего гаджет с помощью камеры делает три последовательных снимка с разницей 30 градусов. Эти фотографии загружаются на сервер, где происходит распознавание интерфейса с помощью алгоритмов компьютерного зрения и сравнение с предварительно размеченными данными из базы, в которой собрана информация о наиболее часто встречающихся интерфейсах терминалов разных производителей. Исходя из этого определяются координаты робота относительно экрана интерфейса. Далее алгоритм на сервере формирует соответствующее меню и отсылает его на мобильное приложение пользователя, которое может озвучивать информацию, доступную на экране, и принимать команды от пользователя. После выбора пункта меню пользователем робот сам нажимает на соответствующую кнопку на экране с помощью выдвижного стилуса. Он представляет собой токопроводящий указатель, закрепленный на стальной рулетке. Рулетка выдвигается на нужную дистанцию из нижней части робота с помощью электромотора, и когда ее конец с указателем оказывается над нужным элементом интерфейса, он активируется с помощью электрического импульса. Таким образом, робот отвечает за физическое взаимодействие с экраном, в то время как пользователь взаимодействует со своим персональным устройством, которое уже содержит необходимые инструменты для помощи слабовидящим. https://www.youtube.com/watch?v=dqfhE42zB1I Для тестирования концепции и дизайна прототипа разработчики пригласили семь слабовидящих испытуемых. Используя робота, они должны были выполнить задание — заказать через интерфейс терминала самообслуживания определенный напиток с дополнительной опцией в виде заданного уровня сахара. Все участники исследования успешно справились с заданием со средним временем около 90 секунд. Из существующих проблем устройства, авторы доклада отмечают перекрытие нужных пунктов меню основанием робота и привязанность к базе данных. Первая проблема может быть решена простым изменением позиции робота или разработкой основания, которое могло бы взаимодействовать с сенсорным экраном. Вторая решается регулярным обновлением базы данных актуальными интерфейсами, либо использованием установленной на большей высоте дополнительной камеры, захватывающей весь экран. В отличие от установленных в общественных местах терминалов, возможностей для взаимодействия с персональными гаджетами у слепых и слабовидящих пользователей гораздо больше. Например, в 2020 году компания Google представила встроенную экранную клавиатуру TalkBack с брайлевым шрифтом для устройств для операционных систем Android.