Американская компания JP Aerosapce провела первые испытания прототипа космического дирижабля, летательного аппарата легче воздуха, который будет использоваться в качестве одной из ступеней системы доставки полезной нагрузки на орбиту. Как пишет Aviation Week, испытания прошли успешно, причем по некоторым параметрам аппарат превзошел расчетные показатели.
Запуск различной полезной нагрузки на орбиту сегодня производится при помощи ракет-носителей. Эти аппараты состоят из нескольких ступеней и требуют долгой подготовки к запуску. При этом доставка груза в космос при помощи ракет довольно дорога, преимущественно из-за высокой стоимости одноразовых ступеней носителей.
Разрабатываемая компанией JP Aerospace система позволит существенно упростить и удешевить запуск полезной нагрузки в космос. Во время испытаний космического дирижабля, получившего название Ascender 36, аппарат смог подняться на высоту 4,1 тысячи метров, а его скороподъемность составила 177 метров в минуту. Соответствующие расчетные показатели для первого полета были немного меньше.
Ascender 36 является уменьшенным демонстратором технологий. V-образный корпус аппарата представляет собой газовый объем с композитным внутренним каркасом. Объем внутри поделен на несколько секций, заполненных гелием. Перекачивая гелий из секции в секцию, оператор аппарат может изменять траекторию его полета, поднимая или опуская носовую часть.
Полноценный аппарат Ascender, по оценке JP Aerospace, сможет подниматься на высоту 42,7 тысячи метров. Он станет первой ступенью системы, которую американская компания назвала Airship to Orbit. Поднявшись на заданную высоту, Ascender с полезной нагрузкой на борту будет пристыковываться ко второй ступени — надувной суборбитальной станции Dark Sky Station.
Станция будет оснащена стартовой платформой для космического летательного аппарата Orbital Ascender. Взлетать с платформы этот аппарат будет так же, как и дирижабль. Достигнув высоты 60,9 тысячи метров, судно будет включать гибридный электрохимический двигатель. За счет тяги силовой установки Orbital Ascender сможет разгоняться до орбитальной скорости более 20 чисел Маха (6,8 километра в секунду).
Разработка проекта Airship to Orbit ведется с 1999 года. Когда именно планируется завершить проект, неизвестно. Компании предстоит найти решение множества технических проблем. В частности, для третьей ступени системы потребуется найти легкие, но очень прочные и очень термоустойчивые материалы, способные выдержать нагрев во время разгона до орбитальной скорости.
Сегодня активно ведутся исследования в области создания летательных аппаратов легче воздуха, способных подниматься на большую высоту. В 2009 году был запущен исследовательский беспилотный шар BU60-1, разработанный Агентством аэрокосмических исследований Японии. Он установил рекорд высоты среди аппаратов такого класса, сумев подняться на 53 тысячи метров.
Василий Сычёв
Источником излучения мог быть радиоактивный изотоп алюминия
Японские ученые облучили водный раствор формальдегида, аммиака и метанола гамма-излучением и получили аминокислоты. Этот процесс мог происходить в хондритах или их родительских телах: в качестве источника гамма-излучения мог выступать радиоактивный изотоп алюминия 26Al, а весь процесс занял бы от одной до ста тысяч лет. Результаты исследования опубликованы в журнале ACS Central Science. Углистыми хондритами называют метеориты из силикатной породы с вкраплением небольших частиц угля, графита, воды и соединений железа. В подобных метеоритах и их предполагаемых родительских телах уже были обнаружены сахара, аминокислоты и азотистые основания. Ученые предполагают, что доставленные такими метеоритами вещества могли сыграть важную роль в процессе химической эволюции на нашей планете. Но пока не до конца понятно, как именно сложные органические вещества появились в самих метеоритах или их родительских телах. В прошлом году японские химики под руководством Йоко Кебукавы (Yoko Kebukawa) из Университета Йокогамы показали, что аминокислоты могут образовываться из формальдегида HCHO и аммиака NH3, но только в жидкой воде и при наличии источника энергии. Теперь Кебукава и ее коллеги решили проверить, могло ли таким источником энергии быть гамма-излучение, которое возникает при радиоактивном распаде изотопа алюминия 26Al, входящего в состав хондритной породы. Ученые приготовили водный раствор формальдегида HCHO и аммиака NH3 с добавлением метанола (мольное соотношение H2O:NH3:HCHO:CH3OH было равно 100:6:8:1, близко к соотношению в реальных хондритах) и запаяли его в тонкие стеклянные трубочки. В качестве источника гамма-излучения использовали радиоактивный изотоп кобальта 60Co.Ученые меняли интенсивность (от 0,5 до 20 килогрей в час) и время облучения (от 3 до 20 часов). Всего они провели тридцать экспериментов, и еще три образца оставили для контроля. Все полученные растворы обработали соляной кислотой, чтобы перевести аминокислоты из формы соответствующих амидов в форму кислоты. Количество аминокислот определяли с помощью метода высокоэффективной жидкостной хроматографии. Альфа-аланин также выделили из смеси и проанализировали отдельно методом тандемной газовой хроматогмасс-спектрометрии (GC-MS), чтобы убедиться, что он находится в форме рацемата (эквимолярной смеси двух изомеров). Таким образом Кебукава и ее коллеги подтвердили, что аминокислоты не были занесены извне — в этом случае альфа-аланин находился бы в основном в форме L-изомера. Больше всего в образцах было альфа-аланина — его концентрация доходила до полутора миллимоль на литр. Также среди продуктов были бета-аланин, глицин, альфа-аминомасляная кислота, бета-аминоизобутановая кислота и глутаминовая кислота. Количество аминокислот оказалось прямо пропорционально общей дозе облучения, при этом не зависело от интенсивности облучения. Кебукаве и ее коллегам удалось превратить в аминокислоты до 0,14 процента всего содержащегося в растворе углерода — для этого потребовалась доза в 200 килогрей.Авторы подсчитали, что начальное содержание радиоактивного изотопа алюминия 26Al в хондритной породе соответствует общей дозе радиации в 6300 килогрей — вполне достаточно для синтеза аминокислот. Например, для образования такого количества альфа-аланина и бета-аланина, которые были обнаружены в Мурчисонском метеорите, потребовалось бы от одной до ста тысяч лет. Интересно что в Мурчисонском метеорите количества альфа-аланина и бета-аланина были очень близки ( 1,3 и 1.4 микрограмм на грамм породы соответственно), в то время, как в эксперименте Кебукавы и ее коллег альфа-аланина получилось примерно в десять раз больше. Авторы предложили такое объяснение: под действием гамма-излучения происходит не только образование, но и распад аминокислот. Альфа-аланин менее стабилен, поэтому при длительном облучении его доля в смеси снижается — особенно, если свободный формальдегид и аммиак закончились, и реакция синтеза аминокислот остановилась.Два года назад мы писали о химических исследованиях Тагишского метеорита, в котором тоже нашли следы аминокислот. Результаты атомно-зондовой томографии показали, что частицы магнетита в его составе формировались в слабощелочной среде. Эти результаты хорошо объясняют, почему глутаминоваяи и аспаргиновая аминокислоты, обнаруженные в этом метеорите, в основном находились в L-форме. Дело в том, что в водном растворе эти аминокислоты могут находиться D- и L-форме, но кристаллизуются обе преимущественно в L-форме. В растворе L-форма постоянно находится в недостатке, и равновесие смещено в сторону ее образования, а в щелочной среде процесс перехода между формами протекает быстрее, чем в кислой или нейтральной.