Британская компания Reaction Engines занялась разработкой относительно компактного гиперзвукового реактивного двигателя для ракет, который будет эффективно работать как в атмосфере, так и в вакууме. При этом, как пишет Aviation Week, силовая установка сможет функционировать без сбоев во всех диапазонах скоростей, начиная дозвуковым и заканчивая гиперзвуковым. Новая установка будет собираться по гибридной схеме, совмещая в себе преимущества атмосферного реактивного и ракетного двигателей, и ее можно будет использовать повторно.
Сегодня ракеты-носители в зависимости от класса имеют несколько ступеней, двигатели каждой из которых работают на строго определенном участке полета. При этом все двигатели являются ракетными, то есть и горючее, и окислитель для их работы подаются из баков в самих ступенях ракеты. Такая конструкция проверена десятилетиями, однако имеет несколько недостатков. В их числе, например, — относительно небольшой забрасываемый вес ракеты-носителя при ее существенных габаритах.
Новый гибридный гиперзвуковой реактивный двигатель позволит сделать ракеты-носители компактнее. Установка получила название SABRE (Synergistic Air-Breathing Rocket Engine, синергичный атмосферный ракетный двигатель). Общие ее габариты будут соответствовать габаритам турбореактивного двухконтурного двигателя с форсажной камерой F135, устанавливаемого на американские истребители F-35 Lightning II. Его длина составляет 5,6 метра, а диаметр — 1,2 метра.
Предполагается, что двигатель получит универсальные камеру сгорания и сопло, по конструкции во многом схожие с подобными элементами обычного ракетного двигателя. На старте и при разгоне SABRE будет работать как обычный прямоточный реактивный двигатель, используя для сжигания топлива воздух. Этот воздух будет подаваться в газогенератор по обводным воздухозаборникам, идущим вокруг системы подачи топлива и окислителя. При достижении скорости в пять чисел Маха (6,2 тысячи километров в час) двигатель будет переходить в ракетный режим.
В ракетном режиме полета воздухозаборники силовой установки будут перекрываться, а в воздуховоды будет небольшими порциями подаваться жидкий кислород. В качестве топлива для двигателя планируется использовать жидкий водород. Для эффективной работы двигателя на скоростях до пяти чисел Маха потребуется охлаждение поступающего воздуха с более чем одной тысячи градусов Цельсия до -150 градусов Цельсия. Дело в том, что по мере увеличения скорости полета воздушный поток в воздухозаборнике начнет резко тормозиться, сжиматься и нагреваться.
Для охлаждения поступающего воздуха Reaction Engines уже разработали соответствующую систему. Она представляет собой сеть трубок диаметром один миллиметр и общей протяженностью около двух тысяч километров. Толщина стенки одной трубки составляет 20 микрон. Сеть этих трубок будет покрывать внешнюю стенку воздуховодов. В сами трубки под давлением в 200 бар (197 атмосфер) будет подаваться гелий, выполняющий роль теплоносителя. По расчетам разработчиков, система позволит охлаждать поступающий воздух за 1/100 секунды.
На первом этапе разработки британская компания планирует создать гибридный двигатель — демонстратор технологий. В атмосферном режиме он сможет развивать тягу до 196 килоньютонов. При этом полноценная силовая установка в этом режиме будет выдавать уже 667 килоньютонов. Для сравнения, двигатель F135 способен развивать тягу в 191 килоньютон в режиме форсажа. Первые испытания демонстратора технологий планируется провести через 12–15 месяцев, а полноценной силовой установки — в 2020–2021 годах.
SABRE позволит создавать одноступенчатые ракеты-носители, причем силовую установку, в отличие от обычных ракетных двигателей, можно будет использовать повторно. По оценке британской компании, гибридный гиперзвуковой двигатель будет иметь несколько преимуществ. Во-первых, он упростит конструкцию ракет-носителей. Во-вторых, повторное его использование позволит сделать запуски грузов в космос дешевле. Наконец, потребление топлива новой силовой установкой будет значительно меньше, чем у обычных ракетных двигателей.
В настоящее время многие страны занимаются разработкой новых силовых установок для ракет-носителей. Так, в конце августа текущего года индийская Организация космических исследований провела первые успешные испытания гиперзвуковых прямоточных воздушно-реактивных двигателей. Такие силовые установки индийцы планируют устанавливать на ракеты-носители, что позволит отказаться от части запаса жидкого окислителя, а значит, сделать массу ракеты меньше. Это в свою очередь позволит несколько увеличить забрасываемый вес.
Пока лишь со скоростью 1,6 миллиметра в секунду
Американские инженеры разработали робота, способного автономно передвигаться в толще сыпучего материала, проталкивая себя вперед с помощью двух конечностей, напоминающих плавники. В испытаниях робот продемонстрировал способность передвигаться в песке на глубине около 127 миллиметров со скоростью до 1,6 миллиметра в секунду. Статья опубликована в журнале Advanced Intelligent Systems. Сыпучие материалы, такие как песок, мягкие почвы, снег или лунный реголит, представляют собой довольно сложную среду для передвижения. Объекты, движущиеся в их толще, испытывают высокое сопротивление, возрастающее с глубиной погружения. Кроме того, сыпучая среда ограничивает возможности зондирования и обнаружения препятствий. Тем не менее инженеры пытаются создать роботов, способных передвигаться в таких условиях. Например, американские разработчики представили прототип робочервя, способного двигаться в толще песка. Для снижения сопротивления он выдувает перед собой воздух, и одновременно разматывает мягкую оболочку своей передней части, выталкивая ее вперед, в то время как остальное тело остается неподвижным. Это позволяет значительно снизить сопротивление движению. Однако для его работы требуется воздух, который приходится подводить с поверхности. Создать робота, который смог бы передвигаться в песке автономно, решили инженеры под руководством Ника Гравиша (Nick Gravish) из Калифорнийского университета в Сан-Диего. Разработанный ими робот перемещается, проталкивая себя вперед через толщу сыпучей среды с помощью двух гибких конечностей, напоминающих плавники морской черепахи. Конечности состоят из пяти звеньев. Каждое звено способно вращаться относительно предыдущего, но углы их отклонений ограничиваются с помощью фиксаторов. В движение оба плавника приводятся через червячную трансмиссию с помощью единственного электромотора. При этом трансмиссия воздействует только на первые ближайшие к корпусу звенья. Благодаря фиксаторам, ограничивающим углы поворотов звеньев, при движении вперед конечности изгибаются, испытывая меньшее сопротивление среды, а при движении назад наоборот, распрямляются, позволяя роботу отталкиваться от песка. На концах конечностей разработчики поместили сенсоры, с помощью которых робот может обнаруживать расположенные сверху объекты. Корпус робота длиной около 26 сантиметров имеет прямоугольное сечение и утолщение в передней части, которое позволяет снизить сопротивление песка при движении. Нос робота заострен и имеет наклонную поверхность сверху, которая необходима для компенсации подъемной силы, возникающей при движении в песке. С этой же целью по бокам после проведенных тестов пришлось разместить два дополнительных наклонных неподвижных плавника, так как робот имел тенденцию задирать нос при движении под действием выталкивающей силы. Чтобы избежать попадания песчинок в механизм, конечности поместили в чехлы из нейлоновой ткани. Разработчики протестировали робота, погруженного на глубину 127 миллиметров в песок, сначала в небольшом искусственном резервуаре, а после в естественных условиях в песке на пляже. В сухом песке робот смог развить скорость 1,6 миллиметра в секунду. В более влажном песке на пляже робот двигался медленнее, со скоростью около 0,57 миллиметра в секунду. В будущем инженеры планируют увеличить скорость передвижения робота, а также научить его самостоятельно погружаться в песок. Ранее мы рассказывали об исследовании, в котором физики выяснили, что происходит со структурой песка при передвижении по нему с помощью прыжков. Они обнаружили, что при правильно подобранном времени задержки между приземлениями и новым толчком, можно увеличить высоту прыжка на 20 процентов и даже больше.