Исландский проект CarbFix подтвердил эффективность утилизации парникового углекислого газа путем закачивания в вулканические породы для минерализации. Международная группа экспертов опубликовала результаты экспериментов в журнале Science.
Проект CarbFix был запущен в 2012 году. Опытный комплекс по утилизации углекислого газа, выделяемого расположенной неподалеку геотермальной электростанцией Хедлисхейди, находится примерно в 25 километрах от Рейкьявика. Газ, растворенный в воде, закачивали в колодец двухкилометровой глубины, еще восемь менее глубоких колодцев служат для мониторинга. Поглощающие углекислоту слои базальта и гиалокластитов расположены на глубине от 400 до 800 метров и покрыты слоем низкопроницаемых гиалокластитов.
В первую фазу эксперимента с января по март 2012 года в колодец закачали 175 тонн растворенного в воде углекислого газа, во вторую с июня по август того же года — 73 тонны смеси углекислоты и сероводорода, который также выделяется электростанцией. Для удобства мониторинга в растворы добавляли углекислый газ, содержащий радиоактивный углерод-14, и меченные радионуклидами летучие гексафторид и трифторметилпентафторид серы.
Наблюдения показали, что в течение двух лет более 95 процентов углекислого газа прореагировало с окружающей породой и минерализовалось с образованием карбонатных горных пород (преимущественно кальцита), что исключает риск его утечки в атмосферу. По словам менеджера проекта Эдды Арадоттир (Edda Aradóttir), такие темпы утилизации удивили самих проектировщиков.
В настоящее время проект минерализует пять тысяч тонн углекислого газа ежегодно. Летом 2016 года планируется установить новое оборудование, которое позволит удвоить это количество. Себестоимость утилизации одной тонны составляет 30 долларов, что дешевле традиционных методов, требующих от 65 до 100 долларов на тонну.
По словам Арадоттир, высокий расход воды — 25 тонн на тонну углекислого газа — не представляет проблем, поскольку для этих целей годится соленая океанская вода. Она добавила, что базальтовыми лавами покрыто порядка 10 процентов суши и почти все океанское дно, поэтому технология минерализации углекислоты имеет большие перспективы применения.
Олег Лищук
Он нажимает на кнопки сенсорных терминалов самообслуживания вместо пользователя
Инженеры разработали прототип устройства, которое помогает слабовидящим пользователям взаимодействовать с сенсорными экранами терминалов и торговых автоматов. Небольшой вращающийся вокруг своей оси робот под названием Toucha11y с камерой и выдвижным стилусом прикрепляется к экрану и распознает интерфейс, после чего передает информацию на смартфон пользователя. В результате пользователь, используя встроенные функции помощи смартфона выбирает нужные команды, а робот нажимает за него на соответствующие элементы интерфейса. Доклад представлен на конференции Conference on Human Factors in Computing Systems 2023. Многие торговые автоматы, терминалы самообслуживания и банкоматы сегодня оснащены сенсорными экранами. При этом они крайне редко оснащены голосовым управлением, что становится серьезным препятствием для слепых и слабовидящих — зачастую они не в состоянии воспользоваться устройствами без посторонней помощи. Инженеры из Мэрилендского университета во главе с Хуай Шу Пэном (Huaishu Peng) предложили способ решения этой проблемы в виде мобильного приложения и работающего с ним в паре небольшого робота под названием Toucha11y, который прикрепляется к экрану терминала. Робот массой 160 грамм оснащен тремя присосками для прикрепления к экрану терминала. Корпус может поворачиваться вокруг своей оси с помощью электромотора, а в верхней части размещена камера, наклоненная на 45 градусов вниз. Одноплатный компьютер Raspberry Pi Zero внутри отвечает за работу механики и за связь с сервером, на котором производятся вычисления. Чтобы начать работу с Toucha11y, пользователь закрепляет его на тачскрине терминала. После чего гаджет с помощью камеры делает три последовательных снимка с разницей 30 градусов. Эти фотографии загружаются на сервер, где происходит распознавание интерфейса с помощью алгоритмов компьютерного зрения и сравнение с предварительно размеченными данными из базы, в которой собрана информация о наиболее часто встречающихся интерфейсах терминалов разных производителей. Исходя из этого определяются координаты робота относительно экрана интерфейса. Далее алгоритм на сервере формирует соответствующее меню и отсылает его на мобильное приложение пользователя, которое может озвучивать информацию, доступную на экране, и принимать команды от пользователя. После выбора пункта меню пользователем робот сам нажимает на соответствующую кнопку на экране с помощью выдвижного стилуса. Он представляет собой токопроводящий указатель, закрепленный на стальной рулетке. Рулетка выдвигается на нужную дистанцию из нижней части робота с помощью электромотора, и когда ее конец с указателем оказывается над нужным элементом интерфейса, он активируется с помощью электрического импульса. Таким образом, робот отвечает за физическое взаимодействие с экраном, в то время как пользователь взаимодействует со своим персональным устройством, которое уже содержит необходимые инструменты для помощи слабовидящим. https://www.youtube.com/watch?v=dqfhE42zB1I Для тестирования концепции и дизайна прототипа разработчики пригласили семь слабовидящих испытуемых. Используя робота, они должны были выполнить задание — заказать через интерфейс терминала самообслуживания определенный напиток с дополнительной опцией в виде заданного уровня сахара. Все участники исследования успешно справились с заданием со средним временем около 90 секунд. Из существующих проблем устройства, авторы доклада отмечают перекрытие нужных пунктов меню основанием робота и привязанность к базе данных. Первая проблема может быть решена простым изменением позиции робота или разработкой основания, которое могло бы взаимодействовать с сенсорным экраном. Вторая решается регулярным обновлением базы данных актуальными интерфейсами, либо использованием установленной на большей высоте дополнительной камеры, захватывающей весь экран. В отличие от установленных в общественных местах терминалов, возможностей для взаимодействия с персональными гаджетами у слепых и слабовидящих пользователей гораздо больше. Например, в 2020 году компания Google представила встроенную экранную клавиатуру TalkBack с брайлевым шрифтом для устройств для операционных систем Android.