Sentinel-1A нашел масляное пятно в окрестностях падения самолета EgyptAir

Спутник европейской программы «Коперник» Sentinel-1A обнаружил объект, напоминающий масляное пятно в 40 километрах от последнего известного местоположения самолета EgyptAir, пропавшего прошлым утром. Европейское космическое агентство (ESA) передало информацию о местоположении пятна поисково-спасательным группам. Об этом сообщает пресс-релиз агентства.

Камера космического аппарата сделала снимок, на котором было обнаружено пятно, 19 мая, в 19:00 по московскому времени. Диаметр пятна составляет около двух километров, его координаты — 33°32' N / 29°13' E. Спутник вновь сфотографировал предполагаемую область крушения самолета 20 мая в 07:00 — пятно сохранилось и сместилось на пять километров от изначальной позиции. Агентство отмечает в своем сообщении, что нет никаких гарантий, что обнаруженный объект каким-либо образом связан с пропавшим A320. 

Второй спутник программы, Sentinel-2A, сделает новые фотографии места крушения 22 мая. Эксперты агентства изучат новые данные для поиска дальнейших указаний на координаты места падения воздушного судна.

Ранее представители авиакомпании EgyptAir подтвердили обнаружение обломков пропавшего самолета вблизи греческого острова Карпатос. Самолет A320 компании EgyptAir выполнял рейс MS804 Париж-Каир 19 мая. Рано утром он пропал с экранов радаров. На борту самолета находилось 66 пассажиров и членов экипажа.

В апреле 2015 года радарные данные, полученные Sentinel-1A позволили проанализировать последствия разрушительного землетрясения в Непале. Не так давно к аппарату присоединился второй спутник этой серии — Sentinel-1B, всего же группировка Sentinel насчитывает уже четыре космических аппарата.

Владимир Королёв

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Образование аминокислот в метеоритах объяснили гамма-излучением

Источником излучения мог быть радиоактивный изотоп алюминия

Японские ученые облучили водный раствор формальдегида, аммиака и метанола гамма-излучением и получили аминокислоты. Этот процесс мог происходить в хондритах или их родительских телах: в качестве источника гамма-излучения мог выступать радиоактивный изотоп алюминия 26Al, а весь процесс занял бы от одной до ста тысяч лет. Результаты исследования опубликованы в журнале ACS Central Science. Углистыми хондритами называют метеориты из силикатной породы с вкраплением небольших частиц угля, графита, воды и соединений железа. В подобных метеоритах и их предполагаемых родительских телах уже были обнаружены сахара, аминокислоты и азотистые основания. Ученые предполагают, что доставленные такими метеоритами вещества могли сыграть важную роль в процессе химической эволюции на нашей планете. Но пока не до конца понятно, как именно сложные органические вещества появились в самих метеоритах или их родительских телах. В прошлом году японские химики под руководством Йоко Кебукавы (Yoko Kebukawa) из Университета Йокогамы показали, что аминокислоты могут образовываться из формальдегида HCHO и аммиака NH3, но только в жидкой воде и при наличии источника энергии. Теперь Кебукава и ее коллеги решили проверить, могло ли таким источником энергии быть гамма-излучение, которое возникает при радиоактивном распаде изотопа алюминия 26Al, входящего в состав хондритной породы. Ученые приготовили водный раствор формальдегида HCHO и аммиака NH3 с добавлением метанола (мольное соотношение H2O:NH3:HCHO:CH3OH было равно 100:6:8:1, близко к соотношению в реальных хондритах) и запаяли его в тонкие стеклянные трубочки. В качестве источника гамма-излучения использовали радиоактивный изотоп кобальта 60Co.Ученые меняли интенсивность (от 0,5 до 20 килогрей в час) и время облучения (от 3 до 20 часов). Всего они провели тридцать экспериментов, и еще три образца оставили для контроля. Все полученные растворы обработали соляной кислотой, чтобы перевести аминокислоты из формы соответствующих амидов в форму кислоты. Количество аминокислот определяли с помощью метода высокоэффективной жидкостной хроматографии. Альфа-аланин также выделили из смеси и проанализировали отдельно методом тандемной газовой хроматогмасс-спектрометрии (GC-MS), чтобы убедиться, что он находится в форме рацемата (эквимолярной смеси двух изомеров). Таким образом Кебукава и ее коллеги подтвердили, что аминокислоты не были занесены извне — в этом случае альфа-аланин находился бы в основном в форме L-изомера. Больше всего в образцах было альфа-аланина — его концентрация доходила до полутора миллимоль на литр. Также среди продуктов были бета-аланин, глицин, альфа-аминомасляная кислота, бета-аминоизобутановая кислота и глутаминовая кислота. Количество аминокислот оказалось прямо пропорционально общей дозе облучения, при этом не зависело от интенсивности облучения. Кебукаве и ее коллегам удалось превратить в аминокислоты до 0,14 процента всего содержащегося в растворе углерода — для этого потребовалась доза в 200 килогрей.Авторы подсчитали, что начальное содержание радиоактивного изотопа алюминия 26Al в хондритной породе соответствует общей дозе радиации в 6300 килогрей — вполне достаточно для синтеза аминокислот. Например, для образования такого количества альфа-аланина и бета-аланина, которые были обнаружены в Мурчисонском метеорите, потребовалось бы от одной до ста тысяч лет. Интересно что в Мурчисонском метеорите количества альфа-аланина и бета-аланина были очень близки ( 1,3 и 1.4 микрограмм на грамм породы соответственно), в то время, как в эксперименте Кебукавы и ее коллег альфа-аланина получилось примерно в десять раз больше. Авторы предложили такое объяснение: под действием гамма-излучения происходит не только образование, но и распад аминокислот. Альфа-аланин менее стабилен, поэтому при длительном облучении его доля в смеси снижается — особенно, если свободный формальдегид и аммиак закончились, и реакция синтеза аминокислот остановилась.Два года назад мы писали о химических исследованиях Тагишского метеорита, в котором тоже нашли следы аминокислот. Результаты атомно-зондовой томографии показали, что частицы магнетита в его составе формировались в слабощелочной среде. Эти результаты хорошо объясняют, почему глутаминоваяи и аспаргиновая аминокислоты, обнаруженные в этом метеорите, в основном находились в L-форме. Дело в том, что в водном растворе эти аминокислоты могут находиться D- и L-форме, но кристаллизуются обе преимущественно в L-форме. В растворе L-форма постоянно находится в недостатке, и равновесие смещено в сторону ее образования, а в щелочной среде процесс перехода между формами протекает быстрее, чем в кислой или нейтральной.