Ученые создали систему машинного обучения, которая может находить «пьяные» записи в Twitter, а также вычислять по их тексту, где именно пьют пользователи в данный момент. Об этом сообщает MIT Technology Review, с исследованием можно ознакомиться на сайте arXiv.org.
Для своей работы ученые из Рочестерского университета в течение года собирали в Нью-Йорке и округе Монро твиты с геотегами. Среди них исследователи выбрали твиты, в которых упоминается алкоголь и относящиеся к нему по контексту слова, такие как «вечеринка», «пиво», «пьяный» и другие. Затем, при помощи сервиса Amazon Mechanical Turk отобранные посты из Twitter отфильтровали, оставив только те, которые имели непосредственное отношение к употреблению алкоголя. Твиты отбирались по трем ключевым вопросам: делает ли твит ссылки на употребление алкоголя; если да, то относится ли этот твит к автору поста непосредственно; если да, вероятно ли то, что пост был на писан во время и в месте распития спиртных напитков. Всего было проанализировано около 11 тысяч твитов. На основе этих данных группа ученых обучила машину опорных векторов (SVM), распознавать «пьяные» посты по содержанию.
Затем исследователи решили определить, где находятся пользователи во время написания своих твитов. В частности, находятся ли они дома или где-нибудь еще. Для того, чтобы определить местонахождение дома авторов записей, ученые скомбинировали несколько методов, использующих геолокацию в Twitter. В частности, исследователи учитывали, откуда пользователь пишет чаще всего, откуда был отправлен последний пост за день и где находится место, откуда пользователь обычно пишет между часом ночи и шестью утра.
Однако этих данных было недостаточно, чтобы точно определить, пишет ли человек из дома или, например, из бара. Поэтому ученые составили список слов и фраз, которые бы могли точно указывать на то, что твит был отправлен пользователем, когда он находился дома. В список «домашних» признаков попали такие фразы, как «Ура, я дома!» и слова, вроде «ванна», «телевизор» или «диван».
Исследователи также отфильтровали твиты по геолокации и снова попросили работников Amazon Mechanical Turk решить, откуда были написаны посты. Затем, на основе этих данных, ученые вновь обучали SVM распознавать «пьяные» твиты. В результате, она смогла определить, откуда написаны твиты с точностью до 70 процентов.
При помощи SVM исследователи не только смогли определить, какие твиты были написаны пьяными людьми, но и составить карту наиболее популярных мест употребления алкоголя. В будущем ученые также планируют научить систему по твитам определять возраст, пол, этническую принадлежность и другие характеристики пользователей. Авторы работы считают, что это исследование может помочь властям в исследованиях проблем общественного здравоохранения.
Кристина Уласович
Он показал лучшее время на трассе, обойдя соперников на полсекунды
Инженеры разработали автопилот для гоночного дрона, управляющий беспилотником на уровне лучших людей-пилотов. Алгоритм под названием Swift, полученный с помощью метода обучения с подкреплением, способен управлять гоночным квадрокоптером, полагаясь только на данные бортовых сенсоров. В реальных полетах на тестовой трассе для дрон-рейсинга Swift смог превзойти трех профессиональных пилотов-чемпионов, выиграв у них 15 гонок из 25 и пройдя трассу с минимальным временем, которое на полсекунды меньше лучшего результата пилота-человека. Статья опубликована в журнале Nature. При поддержке Angie — первого российского веб-сервера Дрон-рейсинг — вид спорта, в котором мультикоптеры на высокой скорости проходят трассу, состоящую из последовательности ворот, через которые нужно пролететь за минимально возможное время. При этом управление происходит от первого лица, с помощью камеры и видеоочков. Современные дроны обладают очень высокой маневренностью и подвижностью: они могут резко менять направление движения, ускоряться, замедляться и совершать перевороты, а во время гонки они разгоняются до скоростей свыше 100 километров в час и подвержены перегрузкам, превышающим их собственный вес в пять раз. Это делает их пилотирование непростой задачей и требует хорошей подготовки и высокой скорости реакции оператора. Инженеры давно работают над созданием автопилота, который мог бы управлять дроном на уровне профессиональных пилотов. Помимо участия в дрон-рейсинге такая способность может пригодиться и в обычной жизни — мультикоптеры обладают невысокой энергоэффективностью, поэтому способность быстро летать и успешно маневрировать в окружении большого числа препятствий напрямую связана с успешностью выполнения задач. Инженеры под руководством Давида Скарамузза (Davide Scaramuzza) из Цюрихского университета уже имеют опыт разработки эффективных алгоритмов управления для дронов. К примеру, ранее они создали автопилот, способный управлять квадрокоптером на скорости от 3 до 7 метров в секунду в лесу между деревьев, полагаясь только на данные с бортовых сенсоров. В своей новой работе инженеры представили алгоритм под названием Swift. Он способен эффективно управлять гоночным квадрокоптером на уровне профессионального пилота дрон-рейсинга. Swift состоит из двух основных модулей: системы восприятия, которая переводит изображение от бортовой камеры дрона и данные от инерционного измерительного блока IMU в низкоразмерное представление, а также системы управления, которая принимает на вход низкоразмерное представление, созданное системой восприятия, и генерирует управляющие команды для электромоторов дрона. В модуль системы восприятия также входит алгоритм, вычисляющий текущее положение дрона в пространстве на основе данных камеры и инерционно-измерительного блока. Эта информация через фильтр Калмана объединяется с данными об относительном положении гоночных ворот, обнаруженных предварительно обученным нейросетевым детектором объектов в видеопотоке, после чего передается на вход системы управления, которая состоит из двух скрытых слоев, по 128 нейронов в каждом. Система управления тренировалась в симуляции с использованием модельно-свободного глубокого обучения с подкреплением. Этот метод обучения использует метод проб и ошибок, чтобы максимизировать величину параметра вознаграждения. В данном случае вознаграждение было максимальным в случае, если дрон следовал в сторону центра ближайших ворот таким образом, чтобы следующие ворота оставались в поле зрения камеры. Чтобы учесть различия между симуляцией и реальной динамикой полета, в процессе обучения информацию симулятора дополнили данными из реального мира, записанными с помощью системы захвата движений. Оценку автопилота провели на трассе для дрон-рейсинга, состоящей из семи ворот, установленных на квадратной площадке с длиной стороны 30 метров. Длина маршрута через все ворота составляла 75 метров. Алгоритм соревновался с тремя профессиональными пилотами Алексом Вановером (Alex Vanover), Томасом Битматтой (Thomas Bitmatta) и Марвином Шэппером (Marvin Schaepper). Все участники использовали гоночные дроны с одинаковыми характеристиками. Перед испытательными соревнованиями у пилотов была неделя для знакомства с трассой. В соревнованиях каждый из пилотов стартовал одновременно с дроном под управлением автопилота. Победителем становился тот, кто быстрее пролетит через все ворота на трассе в правильном порядке три раза. По результатам Swift смог выиграть у своих соперников в совокупности 15 гонок из 25, а также установил рекорд трассы, пролетев ее быстрее на полсекунды, чем остальные участники. https://www.youtube.com/watch?v=fBiataDpGIo&t=1s Инженеры разрабатывают гоночные автопилоты и для автомобилей. Например, инженеры из подразделения искусственного интеллекта компании Sony создали алгоритм автопилота GT Sophy, который с помощью обучения с подкреплением научился проходить за минимальное время трассы в гоночном автосимуляторе Gran Turismo Sport. В настоящих киберспортивных соревнованиях GT Sophy не только показала лучшее время в одиночных заездах, но и смогла победить команду лучших игроков в совместных гонках, набрав больше всего очков.