Международная группа химиков предложила метод синтеза супрамолекулярных структур нужной формы и свойств, собирая их компоненты из «деталей» на манер конструктора Lego. Новый подход авторы представили в статье, опубликованной журналом ACS Central Science, кратко о нем рассказывает пресс-релиз Американского химического общества.
Функциональность биологических макромолекул определяется не столько их первичной структурой, набором атомов и функциональных групп, сколько вторичной, третичной и четвертичной структурами – иначе говоря, организацией этих функциональных групп в пространстве, топологией полимерных доменов, их взаимодействиями друг с другом и с окружающей средой. При этом синтез таких сложных структур в живой клетке напоминает сборку модели из конструктора Lego, деталь за деталью и модуль за модулем.
Такой элегантный и эффективный подход вдохновил развитие популярной в последние годы области «клик–химии». Задачей ее является не столько синтез определенных молекул, сколько поиск систем и механизмов, которые позволили бы поставить такой синтез на поток, за счет подбора определенных функциональных групп и реакций, обеспечивающих соединение различных модулей в нужные структуры. Такой подход применили и химики из США, Франции и Китая, работавшие под руководством Стивена Чэна (Stephen Cheng) из Университета Акрон.
Основной «блок Lego», который использовали ученые, представляет собой соединение DIBO-(XPOSS)–CHO, где POSS – многоугольник кремнийорганического силсесквиоксана с какой-либо функциональной группой (Х), а DIBO и CHO – две химические «защелки», с помощью которых он «крепится» к прочим деталям этого «конструктора». В присутствии медного катализатора дибензоциклооктин (DIBO) вступает в азид-алкиновое циклоприсоединение, а альдегидная группа (CHO) при взаимодействии с аминогруппой может превращаться в оксим. Эти реакции, протекающие на противоположных концах DIBO-(XPOSS)–CHO, обеспечивают контакт «строительных блоков» с «молекулами–адаптерами».
Использовались различные низкомолекулярные «адаптеры», позволяющие восстановить клик-активность концевых групп и повторять цикл, наращивая линейную молекулу в длину, либо ветвя ее на том или ином участке и управляя геометрией образующегося соединения. Наконец, к одному из концов исходного «блока» присоединялся длинный полистироловый (PS) «хвост», который мог использоваться для выделения и очистки продукта, участвовал в самосборке супрамолекулярных комплексов или – при необходимости – мог быть легко удален.
«Процесс обещает удобный модульный способ конструирования гигантских молекул», – замечают Стивен Чэн и его соавторы, описывая несколько супрамолекулярных структур, которые им удалось получить. Ученые синтезировали комплексы с разной длины PS–«хвостом», различными функциональными группами (Х), разным количеством «блоков» XPOSS, расположенных как линейно, так и на ветвящейся структуре. Обладая способностью к самосборке, они образовывали супрамолекулярные соединения разной геометрии, формируя структуры совершенно разных форм, от кубических до шестигранных и «сэндвичей» разной толщины.
«Эта макромолекулярная инженерия может применяться и для более широкого набора синтетических макромолекул, помимо гигантских соединений на базе PS–POSS», – заключают авторы. По их мнению, аналогичный подход позволит с ювелирной точностью конструировать наноструктуры «не только интригующие с научной точки зрения, но и полезные с технологической».
Исследователи из Университета Лунда (Швеция) проанализировали эффективность методов сокращения выброса парниковых газов индивидуальными домохозяйствами, которые обычно рекомендуют официальные источники для снижения углеродного следа отдельным человеком. Оказалось, что большинство популярных рекомендаций касательно экологии, представленных в том числе в школьных учебниках, относительно неэффективны. Самыми действенными методами в борьбе с парниковыми газами оказались отказ от автомобиля, авиаперелетов, отказ от мяса и снижение количества детей в семье. Работа опубликована в журнале с открытым доступом Environmental Research Letters.