Американские исследователи разработали имплантируемые в мозг беспроводные мультифункциональные датчики, которые рассасываются со временем и не требуют хирургического удаления. О своей разработке они сообщают в журнале Nature.
Мониторинг таких параметров внутричерепной среды как температура, давление, кислотность и другие необходимо при различных повреждениях мозга, например, после травмы или операции. В настоящее время оно проводится с помощью достаточно громоздких проводных вживляемых датчиков. Эти датчики могут стать входными воротами для инфекции, вызвать нежелательную реакцию тканей и после использования нуждаются в дополнительной операции по их удалению, что повышает риск развития осложнений, а также увеличивает время и стоимость лечения.
Сотрудники Вашингтонского университета в Сент-Луисе и Иллиноисского университета в Урбане-Шампейне создали датчики, свободные от этих недостатков. В качестве материала для них ученые использовали полилактид-ко-гликолид (PLGA) и силикон в виде мембран толщиной в десятки микрометров, покрытых слоем оксида кремния толщиной около 100 нанометров. Интерфейсом беспроводной связи служат соединенные с полимерными наномембранами молибденовые провода толщиной 10 микрометров, которые, способны рассасываться в организме. Изменяя конфигурацию мембран, исследователи делали датчики чувствительными к давлению, току жидкости, температуре и кислотности.
Установленный в полости черепа миниатюрный датчик тончайшими молибденовыми проводами соединили с находящимся на поверхности головы беспроводным передатчиком, работающим на расстоянии более 10 метров от принимающего оборудования.
В ходе экспериментов in vitro и на лабораторных крысах новые датчики продемонстрировали характеристики, не уступающие стандартным имплантируемым проводным аналогам. При этом они бесследно растворялись как в емкости с солевым раствором, так и в спинно-мозговой жидкости живых крыс в течение нескольких дней. Никаких побочных эффектов при использовании датчиков не наблюдалось.
Исследователи отметили, что их разработку можно использовать для мониторинга состояния практически любого органа. В ближайшее время они планируют приступить к испытанию новой технологии на людях.
Олег Лищук
Пока лишь со скоростью 1,6 миллиметра в секунду
Американские инженеры разработали робота, способного автономно передвигаться в толще сыпучего материала, проталкивая себя вперед с помощью двух конечностей, напоминающих плавники. В испытаниях робот продемонстрировал способность передвигаться в песке на глубине около 127 миллиметров со скоростью до 1,6 миллиметра в секунду. Статья опубликована в журнале Advanced Intelligent Systems. Сыпучие материалы, такие как песок, мягкие почвы, снег или лунный реголит, представляют собой довольно сложную среду для передвижения. Объекты, движущиеся в их толще, испытывают высокое сопротивление, возрастающее с глубиной погружения. Кроме того, сыпучая среда ограничивает возможности зондирования и обнаружения препятствий. Тем не менее инженеры пытаются создать роботов, способных передвигаться в таких условиях. Например, американские разработчики представили прототип робочервя, способного двигаться в толще песка. Для снижения сопротивления он выдувает перед собой воздух, и одновременно разматывает мягкую оболочку своей передней части, выталкивая ее вперед, в то время как остальное тело остается неподвижным. Это позволяет значительно снизить сопротивление движению. Однако для его работы требуется воздух, который приходится подводить с поверхности. Создать робота, который смог бы передвигаться в песке автономно, решили инженеры под руководством Ника Гравиша (Nick Gravish) из Калифорнийского университета в Сан-Диего. Разработанный ими робот перемещается, проталкивая себя вперед через толщу сыпучей среды с помощью двух гибких конечностей, напоминающих плавники морской черепахи. Конечности состоят из пяти звеньев. Каждое звено способно вращаться относительно предыдущего, но углы их отклонений ограничиваются с помощью фиксаторов. В движение оба плавника приводятся через червячную трансмиссию с помощью единственного электромотора. При этом трансмиссия воздействует только на первые ближайшие к корпусу звенья. Благодаря фиксаторам, ограничивающим углы поворотов звеньев, при движении вперед конечности изгибаются, испытывая меньшее сопротивление среды, а при движении назад наоборот, распрямляются, позволяя роботу отталкиваться от песка. На концах конечностей разработчики поместили сенсоры, с помощью которых робот может обнаруживать расположенные сверху объекты. Корпус робота длиной около 26 сантиметров имеет прямоугольное сечение и утолщение в передней части, которое позволяет снизить сопротивление песка при движении. Нос робота заострен и имеет наклонную поверхность сверху, которая необходима для компенсации подъемной силы, возникающей при движении в песке. С этой же целью по бокам после проведенных тестов пришлось разместить два дополнительных наклонных неподвижных плавника, так как робот имел тенденцию задирать нос при движении под действием выталкивающей силы. Чтобы избежать попадания песчинок в механизм, конечности поместили в чехлы из нейлоновой ткани. Разработчики протестировали робота, погруженного на глубину 127 миллиметров в песок, сначала в небольшом искусственном резервуаре, а после в естественных условиях в песке на пляже. В сухом песке робот смог развить скорость 1,6 миллиметра в секунду. В более влажном песке на пляже робот двигался медленнее, со скоростью около 0,57 миллиметра в секунду. В будущем инженеры планируют увеличить скорость передвижения робота, а также научить его самостоятельно погружаться в песок. Ранее мы рассказывали об исследовании, в котором физики выяснили, что происходит со структурой песка при передвижении по нему с помощью прыжков. Они обнаружили, что при правильно подобранном времени задержки между приземлениями и новым толчком, можно увеличить высоту прыжка на 20 процентов и даже больше.