Официальные представители NASA открестились от создания варп-двигателя. На слухи, которые в течение последних недель появлялись в средствах массовой информации, сотрудники агентства ответили в письме изданию Space.com. Ознакомиться с мнением инженеров Космического центра имени Линдона Джонсона, а также ряда независимых экспертов можно в материале издания.
Как ранее сообщил отраслевой наблюдатель, NASASpaceFlight.com, инженеры лаборатории NASA Eagleworks успешно протестировали новый электромагнитный двигатель EmDrive в вакууме и даже смогли измерить его тягу. Особенностью этого устройства, которое многие новостные агенства назвали варп-двигателем, является отсутствии каких либо подвижных частей или камеры сгорания. По словам физиков-теоретиков, разработавших концепцию, функционирование двигателя происходит лишь благодаря взаимодействию порожденных им электромагнитных волн с концевыми пластинками волновода, в котором они распространяются. Важно отметить, что сам механизм возникновения тяги неизвестен.
CNET сообщает, что EmDrive позволит реализовать быстрые перелеты внутри солнечной системы, в частности, что перелет между Землей и Луной может занять всего четыре часа, а путешествие до ближайшей к нам звезды, Альфы Центавра, займет менее 100 лет.
Но подобные заявления являются преждевременными, утверждают представители NASA, отвечая на запрос портала Space.com. Несмотря на то, что инженеры показали возможность создания прототипа EmDrive, поставленный ими эксперимент еще не принес каких-либо значимых результатов. «NASA не занимается разработкой варп-двигателя» — добавляют представители агенства.
По словам Итана Зигеля, профессора физики и астрономии в колледже Льюиса и Кларка (Портленд), значения тяги, наблюдавшиеся в эксперименте (порядка 30-50 микроньютонов), всего лишь в 3 раза превышают погрешность измерения прибора. Это не позволяет рассматривать данные измерения как достаточно надежные, однако эксперт отмечает, что важным моментом было тестирование устройства в различных направлениях, чтобы нивелировать возможное взаимодействие с магнитным полем Земли. Не менее важным он считает факт того, что устройство было испытано в вакууме — в условиях атмосферы могло наблюдаться отталкивание от молекул газа, известное физике. К тому же Зигель отмечает, что детали экспериментов и их результаты еще не прошли рецензирование и не были опубликованы в научном журнале — это условие необходимо для того, чтобы научная общественность признала открытие.
Варп-двигатель это гипотетическое устройство, часто рассматриваемое в фантастике как основа для космических кораблей. Один из классических механизмов его работы, в отличие от EmDrive, заключается в искривлении пространства — сжатия его перед судном и расширения позади. Фактически, корабль при этом остается неподвижным, заставляя скользить пространство вокруг него. Именно так функционируют двигатели звездолетов в сериалах «Звездный путь», «Звездные войны», а также во Вселенной Warhammer 40 000. Похожее устройство описано и в повести «Попытка к бегству» Аркадия и Бориса Стругацких. Любопытно, что существует теоретическая концепция таких устройств, разработанная мексиканским физиком Мигелем Алькубьере.
Для движения ему достаточно одного актуатора
Инженеры разработали миниатюрного робота CurveQuad массой чуть больше 10 грамм. Его гибкий корпус деформируется за счет изогнутых складок и позволяет роботу продвигаться вперед, а также поворачивать, используя для этого только один актуатор. Разработчики продемонстрировали способность CurveQuad автоматически двигаться в направлении источника света, определяя его положение с помощью встроенных фотоэлементов. Текст доклада с описанием робота опубликован в рамках конференции IROS 2023. При поддержке Angie — первого российского веб-сервера Интерес инженеров к разработке миниатюрных роботов связан возможностью выполнять задачи в условиях ограниченного пространства. Например, миниатюрных роботов предлагают использовать для внутренней диагностики механизмов без их разборки, для разведки, и для обследования разрушенных в результате стихийных бедствий зданий в поисках выживших людей. Однако разработка роботов сантиметрового масштаба — непростая задача и ее решение требует множества конструктивных компромиссов. Более сложная походка, например, может добавить роботу проворности, однако одновременно с этим приведет к росту числа степеней свободы конечностей, а значит к увеличению количества используемых актуаторов. Это, в свою очередь, оборачивается усложнением конструкции, увеличением размеров, массы и энергопотребления. Одним из решений этой проблемы могло бы стать применение в конструкции элементов оригами или киригами. Складки упругого материала, выполненные с дополнительным изгибом, позволяют накапливать дополнительную механическую энергию, чем можно воспользоваться, чтобы сократить число актуаторов, необходимых для приведения робота в движение. Такой подход выбрали инженеры под руководством Синтии Сун (Cynthia Sung) из Университета Пенсильвании. Они создали миниатюрного робота под названием CurveQuad, который благодаря изогнутым складкам в конструкции оказался способен передвигаться с помощью всего лишь одного актуатора. Масса робота составляет 10,9 грамм, а ключевая деталь его корпуса представляет собой тонкую прямоугольную пластину из PET-пластика (полиэтилентерефталат) размером 80 × 55 миллиметров. В ней с помощью лазера выполнены прорези в виде последовательно расположенных полукругов, образующих паттерн в форме двух параллельных дуг с каждой стороны пластины, симметрично расположенных относительно центра. Материал в этих областях может легко изгибаться благодаря прорезям, создавая выпуклую и вогнутую складки. В центральной полосе обеих дуг на небольшом расстоянии друг от отдруга закрепляются концы двух «сухожилий» — тяг, которые соединяются противоположной стороной с концами рычага, закрепленного на сервомоторе, ось которого находится в центре пластины. Сервопривод может поворачивать рычаг в диапазоне 270 градусов, при этом «сухожилия», соединяющие концы рычага с корпусом, стягивают его вовнутрь, приводя к изгибам. В зависимости от угла поворота рычага корпус может из плоской пластины принять симметричную куполообразную форму. В этом положении концы пластины начинают играть роль четырех конечностей робота. В промежуточных положениях рычага сервопривода корпус несимметрично деформируется по диагонали. При этом передняя «конечность» приподнимается над поверхностью, а задние смещаются друг относительно друга. Из-за возникающей между ними разности в силах трения в этот момент корпус робота смещается вперед. Если затем такую же деформацию выполнить в противоположную сторону, то робот сделает второй шаг с помощью второй «ноги». Регулируя с помощью угла поворота рычага величину деформации, а следовательно и длину шага слева и справа можно управлять направлением движения робота CurveQuad. https://www.youtube.com/watch?v=RnSHG5F2Iek Для демонстрации возможности управления роботом с помощью обратной связи, инженеры установили на углах корпуса четыре фотоэлемента. Алгоритм сравнивает сигналы, полученные от сенсоров с левой и правой сторон, и в зависимости от того, с какой стороны сигнал больше, выбирает походку, которая поворачивает робота в этом направлении. В результате в каком бы положении робот ни находился изначально, он разворачивается на источник света и начинает двигаться в его направлении. В своей следующей работе инженеры планируют сосредоточиться на взаимодействии между несколькими роботами CurveQuad. Для этого они планируют добавить им возможность общаться друг с другом, чтобы роботы могли выполнять задачи сообща, например, вместе обследовать окружающую территорию. А вот другому микророботу, созданному группой американских и китайских инженеров, для передвижения не нужны сервомоторы. Вперед он движется под действием колебаний встроенной в его корпус пьезоэлектрической пленки, а повороты совершает за счет изменения силы трения между поверхностью и электростатическими площадками на концах передних ног.