Ученые из Исследовательского института MESA+ , входящего в Университет Твенте (Нидерланды), разработали новый метод улучшения разрешения обычного широкопольного микроскопа. Их работа
в журнале
.
Обычный оптический микроскоп позволяет увидеть детали не меньше 200 нанометров (примерно соответствует половине длины волны света в зеленой части видимого спектра) – это ограничение называется дифракционным пределом. Поэтому все, что мельче 200 нанометров, для него недоступно. Однако множество интересных деталей биологической клетки или обычной микросхемы существенно мельче.
Чтобы увидеть их, часто делают несколько изображений одного объекта при разном освещении, после чего все изображения сводят с помощью специализированного софта в одно итоговое, имеющее существенно более высокое разрешение. Обычно для этого подбирают самую просветленную оптику, что на практике не всегда возможно – целому ряду используемых в оптике материалов неизбежно присуще внутреннее случайное рассеивание световых волн на различных посторонних включениях, известных как «пятнышки» (speckle).
Группа голландских исследователей во главе с Хасаном Илмазом (Hasan Yılmaz) попробовала обратить этот недостаток в преимущество. Используя материалы с заранее заданными показателями рассеивания, они насытили оптический материал самыми маленькими «пятнышками», которые ещё различимы в видимом свете (порядка половины длины его волны).
В созданном группой Илмаза экспериментальном микроскопе изучаемый объект помещается на насыщенное такими «пятнышками» предметное стекло, подсвечиваемое лазером. Фото, сделанное через линзы микроскопа, комбинируются затем специализированным ПО, и разрешение итогового снимка возрастает до 116 нм – примерно вдвое более высокого, чем достижимо для обычного оптического микроскопа.
Повышение разрешения обычного микроскопа – задача, успешно решенная и рядом другим методов, таких как сканирование в ближней зоне, использующий так называемую исчезающую волну. Однако практически все альтернативные методы дают микроскопу сравнительно небольшое поле обзора, по размерам часто сравнимо с самим объектом. В то же время группа Илмаза добилась разрешения в 116 нм при поле зрения микроскопа размерами 10 000 на 10 000 нм, что во много десятков раз больше объекта, который может «увидеть» таким прибором. Это означает, что трудоемкость поиска отдельных нанообъектов или клеток при работе с таким прибором будет значительно ниже, чем со сканированием в ближней зоне.
Как отмечают разработчики, сбор света рассеянного лазерного пучка происходит только с поверхности предметного стекла, и получаемые таким образом изображения весьма устойчивы к шумам.
Его система управления автоматически находит оптимальные точки в воздушных потоках
Инженеры разработали алгоритм управления для беспилотников самолетного типа, который позволяет парить на восходящих воздушных потоках, расходуя в 150 раз меньше энергии, чем при активном полете с работающим двигателем. Алгоритм отслеживает и подстраивается под непрерывно изменяющиеся воздушные потоки, сохраняя высоту. Препринт доступен на arXiv.org. При поддержке Angie — первого российского веб-сервера Беспилотники самолетного типа более энергоэффективны, чем мультикоптеры. Благодаря крыльям они способны преодолевать большие дистанции и могут гораздо дольше находиться в воздухе. Причем эти параметры могут быть увеличены за счет парения — планирующего полета, в котором аппарат использует восходящие воздушные потоки для удержания в воздухе без использования тяги двигателей, аналогично тому, как это делают некоторые птицы. Группа инженеров под руководством Гвидо де Круна (Guido de Croon) из Делфтского технического университета разработала систему управления, которая позволяет беспилотникам самолетного типа без какой-либо предварительной информации о поле ветра самостоятельно находить оптимальные точки в восходящих воздушных потоках и использовать их для длительного парения с минимальным расходом энергии. В системе управления вместо обычного ПИД-регулятора используется метод инкрементальной нелинейной динамической инверсии, контролирующий угловое ускорение, подстраивая его под желаемые значения. Система управления может без изменения настроек работать и в режиме парения, и при полете с включенным двигателем во время поиска новых оптимальных точек в воздушных потоках или для компенсации резких порывов ветра. Для поиска оптимальных точек в поле ветра, в которых скорость снижения полностью компенсируется восходящим потоком воздуха, применяется алгоритм имитации отжига. Он случайно выбирает направления в пространстве пытаясь найти такую точку, в которой беспилотник может устойчиво лететь с минимально возможной тягой двигателя. Для тестов инженеры построили 3D-печатный прототип на основе модели радиоуправляемого самолета Eclipson model C. Он имеет размах крыла 1100 миллиметров и массу 716 грамм вместе с аккумуляторной батареей. В качестве полетного контроллера применяется Pixhawk 4. Помимо установленного под крылом и откалиброванного в аэродинамической трубе сенсора скорости, беспилотник имеет GPS-модуль для отслеживания положения во время полетов на открытом воздухе. В помещении применяется оптическая система Optitrack. Испытания проводились в аэродинамической трубе, возле которой установили наклонную рампу, для создания восходящего воздушного потока. Прототип запускали в воздушном потоке сначала на ручном управлении, после чего включали автопилот. Разработчики провели эксперименты двух типов. В первом они постепенно изменяли скорость воздушного потока от 8,5 до 9,8 метров в секунду при фиксированном угле наклона рампы. Во втором эксперименте скорость воздушного потока оставалась неизменной, зато менялся угол установки подиума. В обоих случаях алгоритм системы управления быстро находил в поле ветра точки, в которых мог поддерживать планирующий полет в течение более чем 25 минут, лишь изредка задействуя тягу двигателя в среднем лишь на 0,25 процента от максимальной, хотя при таких значениях воздушного потока для поддержания обычного полета требуется около 38 процентов. При изменении поля ветра из-за изменившегося угла наклона рампы или скорости воздушного потока алгоритм успешно находил и удерживал новое положение равновесия. В будущем инженеры планируют провести испытания на открытом воздухе. https://www.youtube.com/watch?v=b_YLoinHepo Американские инженеры и планетологи предложили использовать планер, способный длительное время держаться в воздухе за счет восходящих потоков и термиков, для изучения каньонов Марса. Предполагается, что такие аппараты с надувными разворачиваемыми крыльями могут стартовать с аэростата или дирижабля и затем планировать в атмосфере Марса от 20 минут до суток.