Рассеянный свет помог удвоить разрешение микроскопа

Спекл-картина (пятнышки), возникающая при интерференции когерентных лазерных лучей со случайным сдвигом фазы.
Wikimedia Commons
Обычный оптический микроскоп позволяет увидеть детали не меньше 200 нанометров (примерно соответствует половине длины волны света в зеленой части видимого спектра) – это ограничение называется дифракционным пределом. Поэтому все, что мельче 200 нанометров, для него недоступно. Однако множество интересных деталей биологической клетки или обычной микросхемы существенно мельче.
Чтобы увидеть их, часто делают несколько изображений одного объекта при разном освещении, после чего все изображения сводят с помощью специализированного софта в одно итоговое, имеющее существенно более высокое разрешение. Обычно для этого подбирают самую просветленную оптику, что на практике не всегда возможно – целому ряду используемых в оптике материалов неизбежно присуще внутреннее случайное рассеивание световых волн на различных посторонних включениях, известных как «пятнышки» (speckle).
Группа голландских исследователей во главе с Хасаном Илмазом (Hasan Yılmaz) попробовала обратить этот недостаток в преимущество. Используя материалы с заранее заданными показателями рассеивания, они насытили оптический материал самыми маленькими «пятнышками», которые ещё различимы в видимом свете (порядка половины длины его волны).
В созданном группой Илмаза экспериментальном микроскопе изучаемый объект помещается на насыщенное такими «пятнышками» предметное стекло, подсвечиваемое лазером. Фото, сделанное через линзы микроскопа, комбинируются затем специализированным ПО, и разрешение итогового снимка возрастает до 116 нм – примерно вдвое более высокого, чем достижимо для обычного оптического микроскопа.
Как отмечают разработчики, сбор света рассеянного лазерного пучка происходит только с поверхности предметного стекла, и получаемые таким образом изображения весьма устойчивы к шумам.