Индийские ученые научились автоматически «залечивать» дефект в дорожках микросхем. Для этого используется дисперсия проводящих частиц, которые под действием электрического поля, возникающего между краями дефекта, выстраиваются в токопровоодящий мостик. Работа
в
.
Ученые использовали два типа «лечащих» суспензий: медные микрочастицы, углеродные нанотрубки, или смесь первых и вторых. Микросхему предварительно помещали в полимерный каркас с полостями, повторяющими контуры дорожек, а затем пространство между микросхемой и каркасом заполняли этой суспензией.
В среднем дефекты «залечивались» со скоростью один микрон в секунду, а сопротивление полученных мостиков составляло восемь килоом. Ученые отмечают, что такое высокое сопротивление может нарушить работу аналоговых устройств, однако в случае цифровых микросхем, где токи малы, это не сильно изменит режим работы прибора.
Главной особенностью технологии является то, что частицы начинают двигаться только при появлении электрического поля, то есть только при наличии дефекта. Как только разрыв устранен, движущая сила исчезает, и суспензия опять переходит в «режим ожидания». По этой причине авторы называют свою систему «интеллектуальными автоматами» (automata).
Еще одним интересным свойством суспензий оказалась их способность проходить «лабиринты». Если разрыв возникает между двумя узлами проводящей решетки, суспензия находит и залечивает кратчайший путь. По словам авторов, это явление объясняется очень просто: частицы движутся вдоль силовых линий электрического поля, которые всегда проходят по наиболее короткому пути.
Системы, аналогичные описанной, были известны и раньше: они устраняли дефекты в микросхемах за счет перераспределения импедансов, или заполняя дефекты проводящей жидкостью. Новый метод выгодно отличается наличием «интеллектуальной компоненты», из-за чего его проще контролировать.
Применение он может найти в тех областях, где устранение даже небольшого дефекта может быть очень затратно или вовсе невозможно, например, в электронных системах спутников.
Пока лишь со скоростью 1,6 миллиметра в секунду
Американские инженеры разработали робота, способного автономно передвигаться в толще сыпучего материала, проталкивая себя вперед с помощью двух конечностей, напоминающих плавники. В испытаниях робот продемонстрировал способность передвигаться в песке на глубине около 127 миллиметров со скоростью до 1,6 миллиметра в секунду. Статья опубликована в журнале Advanced Intelligent Systems. Сыпучие материалы, такие как песок, мягкие почвы, снег или лунный реголит, представляют собой довольно сложную среду для передвижения. Объекты, движущиеся в их толще, испытывают высокое сопротивление, возрастающее с глубиной погружения. Кроме того, сыпучая среда ограничивает возможности зондирования и обнаружения препятствий. Тем не менее инженеры пытаются создать роботов, способных передвигаться в таких условиях. Например, американские разработчики представили прототип робочервя, способного двигаться в толще песка. Для снижения сопротивления он выдувает перед собой воздух, и одновременно разматывает мягкую оболочку своей передней части, выталкивая ее вперед, в то время как остальное тело остается неподвижным. Это позволяет значительно снизить сопротивление движению. Однако для его работы требуется воздух, который приходится подводить с поверхности. Создать робота, который смог бы передвигаться в песке автономно, решили инженеры под руководством Ника Гравиша (Nick Gravish) из Калифорнийского университета в Сан-Диего. Разработанный ими робот перемещается, проталкивая себя вперед через толщу сыпучей среды с помощью двух гибких конечностей, напоминающих плавники морской черепахи. Конечности состоят из пяти звеньев. Каждое звено способно вращаться относительно предыдущего, но углы их отклонений ограничиваются с помощью фиксаторов. В движение оба плавника приводятся через червячную трансмиссию с помощью единственного электромотора. При этом трансмиссия воздействует только на первые ближайшие к корпусу звенья. Благодаря фиксаторам, ограничивающим углы поворотов звеньев, при движении вперед конечности изгибаются, испытывая меньшее сопротивление среды, а при движении назад наоборот, распрямляются, позволяя роботу отталкиваться от песка. На концах конечностей разработчики поместили сенсоры, с помощью которых робот может обнаруживать расположенные сверху объекты. Корпус робота длиной около 26 сантиметров имеет прямоугольное сечение и утолщение в передней части, которое позволяет снизить сопротивление песка при движении. Нос робота заострен и имеет наклонную поверхность сверху, которая необходима для компенсации подъемной силы, возникающей при движении в песке. С этой же целью по бокам после проведенных тестов пришлось разместить два дополнительных наклонных неподвижных плавника, так как робот имел тенденцию задирать нос при движении под действием выталкивающей силы. Чтобы избежать попадания песчинок в механизм, конечности поместили в чехлы из нейлоновой ткани. Разработчики протестировали робота, погруженного на глубину 127 миллиметров в песок, сначала в небольшом искусственном резервуаре, а после в естественных условиях в песке на пляже. В сухом песке робот смог развить скорость 1,6 миллиметра в секунду. В более влажном песке на пляже робот двигался медленнее, со скоростью около 0,57 миллиметра в секунду. В будущем инженеры планируют увеличить скорость передвижения робота, а также научить его самостоятельно погружаться в песок. Ранее мы рассказывали об исследовании, в котором физики выяснили, что происходит со структурой песка при передвижении по нему с помощью прыжков. Они обнаружили, что при правильно подобранном времени задержки между приземлениями и новым толчком, можно увеличить высоту прыжка на 20 процентов и даже больше.