Каких лабораторных животных использовать в эксперименте, чтобы не переплатить?
В качестве модельных организмов используют самых разных животных: от мушек-дрозофил до приматов. Не каждое подойдет для конкретных исследований — где-то чисто по техническим причинам, где-то уже по соображениям этики. Да и не для всякой науки нужны обязательно сложные организмы. Есть в выборе кандидата в испытуемые и чисто прагматическая составляющая: ведь их надо кормить, за ними надо ухаживать, а это время и деньги. Попробуйте себя в роли эффективного и при этом этичного экспериментатора — проверьте себя в тесте N + 1 и Российского научного фонда.
Проект получил название Unknome
Британские исследователи представили пополняемую и редактируемую пользователями базу данных белков, в которой они ранжируются по степени того, насколько мало о них известно. Проект призван обратить внимание на подобные белки и ускорить процесс их изучения. Публикация об этом появилась в журнале PLoS Biology. Как известно со времени прочтения человеческого генома, в нем закодировано примерно 20 тысяч белков. Применение протеомного и транскриптомного подхода в прошедшие после этого два десятилетия подтвердило, что большинство из них экспрессируются, и позволило выяснить назначение многих из них. Тем не менее, многие белки до сих пор остаются не охарактеризованными несмотря на то, что значительная их часть эволюционно консервативна и может выполнять критически важные функции. Во многом это связано с тем, что исследователи склонны фокусироваться на уже изученных белках, поскольку такие работы дают более предсказуемый результат. Чтобы систематизировать подход к идентификации и характеризации неизвестных белков, сотрудники Лаборатории молекулярной биологии британского Совета по медицинским исследованиям, Кембриджского и Оксфордского университетов под руководством Мэтью Фримена (Matthew Freeman) и Шона Манро (Sean Munro) создали и выложили в открытый доступ базу данных Unknome (буквально «незном», сокращенное от unknown genome — «неизвестный геном»). Она содержит ортологичные по базе PANTHER и собранные в кластеры последовательности белков человека и популярных модельных животных (таких, например, как кишечная палочка, дрозофила и мышь), взятые из базы UniProt. Им присваивается численная оценка «известности» (knownness) на основании аннотаций в проекте Gene Ontology (GO). Пользователи могут присваивать им свою оценку, исходя из имеющейся информации. Авторы работы оценили пригодность Unknome как основания для экспериментальной работы, выбрав с его помощью набор из 260 белков дрозофилы с неизвестными функциями (показатель известности 1,0 и менее), сохранившихся у людей. Нокдаун некоторых из этих генов с помощью РНК-интерференции приводил к утрате жизнеспособности. Функциональный скрининг остальных указал на участие некоторых в фертильности, развитии организма, передвижении, контроле качества синтезированных белков и устойчивости к стрессу. Выборочное выключение генов с использованием CRISPR/Cas9 определило два гена, отвечающих за мужскую фертильность, и компонент сигнального пути Notch, принимающего участив нейрогенезе, онкогенезе и связанного с различными неврологическими заболеваниями и пороками развития. Исследователи заключают, что тщательная оценка недостаточности знаний о функции гена и кодируемого им белка предоставляет ценный ресурс для поиска направлений биологических исследований и, возможно, стратегий их эффективного финансирования. Иногда на точность генетических баз данных могут влиять весьма неожиданные факторы. В материале «Наследили тут» можно почитать о том, как данные в одной из таких баз оказались испорчены неизвестными паразитами.