Функционирует при финансовой поддержке Федерального агентства по печати и массовым коммуникациям (Роспечать)

Дары генуэзцев

Зачем нужен магнит, для доставки которого в Дубну обесточили полгорода

В прошлую пятницу многие жилые дома подмосковного города Дубны остались без электричества, воды и отопления. Закрылись некоторые магазины, перестал работать сайт местного Объединенного института ядерных исследований. Дубненский «конец света» не стал сюрпризом для тех, кто обратил внимание на листовки, которые появились в городе накануне. Те предупреждали, что с 10 до 12 часов «будет осуществляться перемещение магнита MPD для проекта NICA от причала на реке Дубна до площадки Лаборатории физики высоких энергий ОИЯИ». Что это за магнит и зачем он нужен дубненским физикам, листовки, увы, не объясняли. О том, что именно прислали из Генуи в Дубну и почему для получения этой посылки дубненцам пришлось запастись на полдня водой, N + 1 расспросил Владимира Кекелидзе, директора лаборатории, в которую прибыл магнит из Италии.


Дубненский коллайдер

Коллайдер — это один из типов ускорителей, в котором разогнанные заряженные частицы — электроны, протоны, ионы и так далее — сталкиваются с другими такими же частицами. Коллайдеров в мире много: прямо сейчас работает семь, а самый известный из них — Большой адронный коллайдер — использует в качестве снарядов протоны (на нем проводятся и эксперименты с ионами свинца, но это не основная часть его рабочего времени), и предназначен для поиска новых частиц и «новой физики».

Коллайдер NICA, который уже давно строится в Дубне, будет сталкивать тяжелые ионы и изучать экстремальное состояние вещества — кварк-глюонную плазму. Ее температура и плотность настолько высока, что осколки элементарных частиц, кварки, не «склеиваются» в адроны, частицы привычной для нас материи (глюоны, соответственно, это тот самый «клей», калибровочный бозон, который отвечает за сильное взаимодействие кварков друг с другом).

У кварк-глюонной плазмы, как у любого другого вещества, есть фазовая диаграмма. В случае воды эта диаграмма показывает, как на координатной плоскости «температура — давление» проходят границы между тремя агрегатными состояниями — жидкостью, газом (паром) и твердым состоянием (льдом). На этой плоскости есть критические точки, например, тройная точка воды, где все три ее состояния могут существовать одновременно. Ученые рассчитывают с помощью «Ники» выяснить, как выглядит фазовая диаграмма кварк-глюнной плазмы, и где на ней находятся критические точки. Подробнее о задачах «Ники» читайте в нашем материале «Маленький взрыв».

Для того, чтобы получить кварк-глюонную плазму и разобраться в том, что в ней происходит, недостаточно просто столкнуть ионы в коллайдере. Нужно еще собрать данные о результатах этого столкновения. Для этого, помимо ускорителя и источника частиц нужны детекторы в точках столкновения пучков ионов.


Зачем нужен магнит?

В сентябре 120-тонный саркофаг ярко желтого цвета погрузили в порту Генуи на корабль, который отправился в Петербург. 28-го октября его пересадили уже на речной транспорт, и неделю спустя баржа встала на рейд строго на границе между Тверской и Московской областью — на реке Дубна. На следующий день к ней подогнали плавучий кран, тот перегрузил итальянскую посылку с баржи на автомобильный тягач, и тот отправился с берега Дубны в Лабораторию физики высоких энергий. Под эту трехкилометровую поездку пришлось обесточить несколько районов города: саркофагу высотой семь метров надо было проехать под линиями электропередач, которые висели слишком низко — поэтому линию отключили а провода приподняли краном, чтобы пропустить под ними грузовик. Поскольку водоснабжение и вышки сотовой связи тоже нуждаются в электричестве, часть жителей города осталась без воды и связи.

Внутри «коробки», проделавшей этот путь — главный элемент детектора MPD (Multi-Purpose Detector). В центре этого детектора, похожего по форме на гигантскую металлическую бочку, и будут сталкиваться пучки тяжелых ионов. Детектор будет определять массу и скорость всех получившихся при столкновении осколков и новых частиц. А физики, анализируя эти данные, будут реконструировать физические процессы, возникающие при столкновениях. Точно так же данные о столкновениях собирают детекторы Большого адронного коллайдера CMS и ATLAS, которые почти десять лет назад засекли следы рождения бозона Хиггса, существование которого было предсказано за полвека до того.

«Если речь идет о столкновениях ядер [атомов] золота с прицельным параметром (максимальным отклонением от центра), скажем, пять фемтометров, то при каждом столкновении будет рождаться около двух тысяч заряженных частиц. Частота таких столкновений при проектной светимости коллайдера будет около 7 тысяч в секунду, то есть 7 килогерц. Детектор должен каждую из таких частиц зафиксировать, то есть определить, что это за частица, измерить ее траекторию», — объясняет Кекелидзе.

Роль главного «чувствительного элемента» в MPD играет камера TPC (Time Projection Chamber — «времяпроекционная камера»). Это тоже бочка — диаметром 2,6 метра и длиной 3,4 метра, которую посередине пересекает «перепонка»-катод, подключенная к источнику высокого напряжения. «Дно» и «крышка» бочки — это аноды. Пространство в бочке заполнено инертным газом (90 процентов аргона и 10 процентов метана). Когда заряженная частица пролетает сквозь него, она ионизирует его и получившиеся электроны начинают дрейфовать к анодам, где их встречают позиционные детекторы, которые определяют не только точку прихода этих электронов, но и время их прихода.

«Точка определяет позицию X-Y, а время — если знать скорость дрейфа электронов с учетом напряжения — определяется расстоянием вдоль оси этого цилиндра», — говорит Кекелидзе.

Помимо TPC в детекторе есть еще несколько чувствительных элементов: времяпролетная камера (TOF), которая восстанавливает траекторию полета, калориметры, осевые детекторы — все они призваны собрать достаточно данных, чтобы восстановить трехмерную картину разлета «осколков» с помощью дубненского суперкомпьютера «Говорун».

Однако вся эта машинерия будет бесполезной, если не будет выполнено главное условие: в камере детектора должно было постоянное магнитное поле определенной конфигурации. Магнитное поле играет роль той «руководящей и направляющей силы», благодаря которой заряженные частицы летят не в случайных направлениях, а по траекториям, которые определяются их скоростью и массой.

В однородном магнитном поле заряженные частицы летят по криволинейной траектории, поворачивая поперек силовых линий. На этом эффекте построен принцип действия масс-спектрометров: чем круче поворачивает частица в магнитном поле, тем меньше ее масса.

«По радиусу траектории и величине магнитного поля можно однозначно определить импульс частицы. Если вы знаете импульс, вы можете измерить ее массу. Если у вас будет время пролета, оно даст вам скорость. Зная скорость и импульс, вы можете посчитать массу и восстановить всю кинематику миллионов рожденных при столкновении частиц», — говорит Кекелидзе.

Чтобы эта восстановленная картина была достаточно точной, нужно, чтобы магнитное поле было очень, очень однородным. «Перед разработчиками магнита была поставлена задача, чтобы во всем объеме TPC-камеры — 2,6 метра на 3,4 метра — поле было идеально, чтобы силовые линии были точно параллельны оси. Мы потребовали такой однородности, которой еще ни в одном эксперименте я не помню», — говорит ученый. Магнитное поле MPD не слишком велико — 0,5 теслы, максимум — 0,65 теслы. Похожий соленоид детектора CMS рассчитан на поле 4 теслы. Однако здесь самое важное не «сила» магнита, а его «точность».

По словам собеседника N + 1, отношение поперечной составляющей поля к осевой должно быть не более, чем 3*10-4. Любое отклонение будет означать, что вся установка будет бесполезна для ученых. «Если поле будет неоднородным, у вас будет ошибка измерений параметров, а значит научный результат вы получить не сможете», — объясняет Кекелидзе.


Как строили магнит

Итальянская компания ASG Superconductors специализируется на производстве мощных сверхпроводящих магнитов, именно здесь делали значительную часть магнитов как для Большого адронного коллайдера и его детекторов CMS и ATLAS, так и для его предшественника — электрон-позитронного коллайдера LEP.

Магнит для детектора MPD устроен примерно так же, как магнит детектора CMS. Это два вложенных друг в друга цилиндра из нержавеющей стали диаметром 5,4 метра и 4,6 метра. Торцы закрыты фланцами. В пространстве между ними — катушка с намотанным на нее сверхпроводящим кабелем общей длиной 27 километров и массой 6,4 тонны, и трубки системы охлаждения. В пространстве между цилиндрами должен поддерживаться вакуум (10−5 торр — примерно одна стотысячная доля миллиметра ртутного столба).

Несмотря на сходство с магнитами для Большого адронного коллайдера, магнит для MPD — штучное изделие. По словам Кекелидзе, только для того, чтобы создать инструменты и оснастку для постройки, понадобилось два года. Пришлось повозиться и со сверхпроводящим кабелем. «Первоначально планировалось заказать его компании из Бразилии, но кабель был забракован, потом из Америки — тоже не пошел. В конце концов японский вариант подошел. Только работа с кабелем заняла полтора года», — сказал Кекелидзе.

Сверхпроводящий кабель сделан из собственно сверхпроводящего провода (сплав ниобия и титана), и матрицы из сверхчистого алюминия, в которую он внедрен. Для того, чтобы намотать получившийся кабель на катушку, потребовалась построить намоточную машину высотой с трехэтажный дом, — сложное инженерное сооружение, с электромоторами, точной подачей, с контролем намотки. После намотки катушку залили густой жидкостью на базе эпоксидной смолы и запекли в специально построенной печи. «Нельзя было допустить, чтобы даже один пузырек воздуха остался в этой смоле. Пришлось бы все делать заново», — говорит Кекелидзе.

Соленоид с системой труб системы охлаждения поместили в вакуумный криостат и примерно год испытывали и проверяли. Затем магнит уложили в специально построенный семиметровый саркофаг, оснащенный датчиками ускорений, и 18 сентября отправили морем из Генуи в Петербург. Всего постройка магнита заняла почти пять лет — переговоры российских физиков с подрядчиками начались еще в 2014 году, а формальный контракт подписан в 2016 году.


Что дальше?

Пока саркофаг будет стоять на специальных опорах в экспериментальном зале детектора MPD. Вскроют его только после того, как в Дубну приедут итальянские специалисты. Те должны будут, в частности, проверить датчики ускорений: нужно убедиться, что в процессе перевозки магнит нигде не «приложили». «Надеюсь, что пандемия не задержит их приезд», — говорит Кекелидзе.

После того, как саркофаг будет вскрыт, криостат установят в железное «ярмо» детектора. Оно собрано пока что лишь наполовину и стоит в экспериментальном зале на рельсах, в стороне от линии, по которой в будущем будет лететь поток тяжелых ионов. Когда коллайдер начнет работать, детектор нужно будет просто подкатить к этой линии.

«Сложность заключается в том, что точность размещения криостата, точность самого ярма должна быть очень высокой. Несмотря на большие размеры и вес, речь идет о «сотках», то есть точность позиционирования составляет 300-400 микрон. От этого зависит качество магнитного поля«, — говорит Кекелидзе.

Потом начнется процедура подключения. «Туда надо вести криогенные линии с гелием, с азотом, коммуникации, и все это надо подключить к большой криогенно-компрессорной станции, которая сейчас еще строится. Это крупнейшая в России криогенно-компрессорная станция по сжижению жидкого гелия и наработке жидкого азота. Туда подключаются все силовые линии, источники питания, коммуникации. Мы надеемся, что все это будет закончено где-то к весне», — говорит ученый.

Когда все линии будут подключены, специалисты начнут тестировать магнит, чтобы убедиться в устойчивости магнитного поля, что все сооружение в целом выдерживает нагрузки. Начнутся измерения магнитного поля. Для этого в ЦЕРНе специально по заказу ОИЯИ изготовили измеритель магнитного поля. Похожий измеритель на базе датчиков Холла использовался для измерения поля на детекторах Большого адронного коллайдера.

По словам Кекелидзе, специально для измерений в Дубну приедут специалисты ЦЕРНа. «Часть из этих ребят из ЦЕРНа уже вышла на пенсию в этом году, мы должны будем извлечь их из пенсионного отдыха во Франции и Швейцарии. Но они сами переживают за нас и готовы помочь, приехать. Месяц-два будем измерять магнитное поле. Когда магнитное поле будет измерено, только тогда закончится наш контракт с итальянцами, потому что они отвечают за параметры магнитного поля, которые там должны быть достигнуты».

Только после этого сборка детектора продолжится: внутрь криостата будет установлена углепластиковая ферма, которую создают в подмосковном ЦНИИ специального машиностроения. В эту раму будут помещены электронные калориметры, TPC-камера и другие «чувствительные элементы» детектора.

«Мы надеемся, что сборка закончится в середине 2022 года, — говорит Кекелидзе. — Тогда начнется калибровка и тесты, подключится весь компьютинг и онлайн-системы, все кабели, коммуникации. Начнем испытывать это все на космиках (частицах космических лучей) и проводить калибровки с тем, чтобы к концу 2022 года, когда появятся первые пучки, закатить на место и начать набор данных. Такой план».

Сергей Кузнецов







Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.