Где роботы успешно заменяют человека?
В этом модуле вы узнаете:
• как используют роботов в промышленности;
• как роботы помогают исследовать небо, землю и воду;
• в какой области роботы эффективнее человека;
• чем робот может помочь врачам и медсестрам;
• какие роботы окружают нас в повседневности;
• могут ли роботы быть целиком виртуальными.
В этом видео ментор курса Николай Пак рассказывает, какие роботы распространены в промышленности, почему они пришлись ко двору в науке, какие задачи роботы берут на себя в медицине и как упрощают нашу повседневную жизнь. В следующих частях модуля мы подробно обсудим каждую из этих областей.
Когда будете смотреть видео, обратите внимание:
Какой завод Николай приводит в пример как роботизированное производство?
Как называется робот-хирург?
Роботы не устают от монотонных задач, могут поднимать объемные грузы и работать быстро, им не нужны выходные и перерывы на обед. Неудивительно, что самые разные производства (от повседневных товаров до самолетов и космических аппаратов) «нанимают» роботов с распростертыми объятиями. Ниже мы собрали самые характерные примеры роботов на производстве.
Манипулятор — это те самые роботизированные «руки», которые мы видим на фотографиях и видео с современных фабрик и заводов. Их снабжают разнообразными датчиками, чтобы они могли обрабатывать и соединять детали, контролировать качество продукции, упаковывать ее и т. д.
Роботы-сортировщики помогают освободить людей от тяжелого и монотонного труда, который требует большой концентрации. Их сенсоры готовы 24/7 анализировать вид деталей и элементов, лежащих на конвейере, и распределять их по разным отсекам. Например, сегодня роботы-сортировщики часто разбирают строительный мусор, ведь что-то из него можно повторно использовать или переработать.
Роботы-погрузчики освобождают людей от необходимости перемещать что бы то ни было — от бумаг до объемных грузов. Например, в архиве Сбербанка нужные коробки с документами находят и перемещают специальные роботизированные краны-штабелеры. А гиганты интернет-торговли Amazon и Alibaba вовсю используют роботов-кладовщиков, которые берут 70% рутинной работы на себя и весьма самостоятельны (например, смогут сориентироваться на складе, если там изменится планировка).
В строительстве роботы ценны тем же, чем и в промышленности: они берут на себя физически тяжелые, опасные и монотонные задачи. К тому же им не страшна плохая погода: темп их работы не упадет из-за похолодания или дождя.
Робот-строитель — отличный пример того, что роботы способны выполнять однообразные задачи в разы быстрее людей. Так, робот-строитель от Fastbrick Robotics работает в 20 раз быстрее обычного каменщика и может сам возвести фундамент частного дома из кирпича за два дня. С ним строители смогут возводить по 150 кирпичных зданий в год — им остаются коммуникации и отделочные работы.
Робот для прокладки кабеля пробирается по каналам, уже прорытым для труб, и тянет за собой телефонный или оптический кабель. Это значит, что для прокладки кабеля не нужно ничего копать отдельно, можно использовать готовые трубы. Более того, поломки тоже обнаружить проще: такие роботы могут исследовать трубопроводы с помощью камеры и подсветки.
Робот-экскаватор Brokk из Швеции может выполнять на стройке очень много задач: откапывать, грузить и переносить предметы, разбирать конструкции из железобетона, кирпича и металла, снимать слои штукатурки со стен, бурить отверстия и т. д.
В 2019 году в Амстердаме планируют установить мост, целиком изготовленный из стали по методу 3D-печати, прямо в воздухе. Два робота начинают строить мост на разных берегах и продвигаются вперед по уже возведенной части, встречаясь на середине уже готового моста. Роботизированные системы напечатают все детали моста прямо на месте, их не придется везти. Своеобразные строительные леса, а точнее, конструкции, которые выдержат их собственный вес, они тоже построят сами.
Роботы-исследователи незаменимы при изучении опасных для человека локаций и явлений, а также там, где требуется большая точность или физическая сила. Они могут забраться туда, куда людям ход заказан: глубоко под воду, в жерло вулкана или, наоборот, на уровень органов и даже отдельных клеток живого организма
Катер. Роботизированные катера исследуют и изучают реки, озера и моря. Особенно они полезны в экстремальных условиях — например, во льдах Дальнего Севера. Они могут работать самостоятельно, а могут — по командам оператора через дистанционное управление. Если управление ведется через радиоволны, оператор может находиться довольно далеко от робота. Даже на другом конце города среднего размера.
Батискаф / глайдер. Роботы-батискафы и роботизированные глайдеры с разными принципами движения оказывают нам неоценимую помощь в исследовании морских глубин. Человека туда отправлять пока рано: для долгих погружений аппарату надо быть большим и дорогим. Да и нужно ли это, если можно сделать робота любой формы из устойчивых к низким температурам материалов, наделить его манипуляторами, датчиками, снабдить камерой и исследовать глубины, не подвергая человека опасности?
Станция. Роботизированные подводные и донные станции ведут длительное наблюдение за экологией и геологией глубин и помогают отслеживать экологическую, геологическую, ледовую и другую обстановку на недоступной человеку глубине и в неподходящих условиях. Например, глубоководная экспедиция в Марианскую впадину от Национального управления океанических и атмосферных исследований (National Oceanic and Atmospheric Administration, NOAA) обнаружила множество новых биологических видов благодаря роботу с камерой на дистанционном управлении. В зависимости от назначения и аккумулятора такие станции могут работать от нескольких недель до нескольких лет.
Вулкан. На планете есть и другие места, куда человеку не забраться (например, вулканы и гейзеры). Построенный из устойчивых к высоким температурам и ядовитым газам материалов робот способен проводить исследования даже в момент пиковой сейсмической активности. НАСА разработало уже два таких робота: один перемещается на колесах, а второй имитирует движения червя и за счет этого может перемещаться по отвесным ледяным скалам.
Curiosity — марсоход третьего поколения, который был запущен НАСА в 2011 году, по сути — автономная химическая лаборатория, которая исследует почву и атмосферу Марса.
Роботизированные помощники уже появились на МКС, а скоро роботы будут выполнять простейшие рутинные обязанности космонавтов: например, устранять неполадки с солнечными панелями при отказах автоматики, которая меняет их положение, или монтировать блоки космических станций. Русский сегмент МКС уже сегодня чинит космический манипулятор ERA. А может быть, астронавтов и вовсе в будущем заменят электронные коллеги — уже ведутся разработки роботов-космонавтов. И тренировать никого не надо, и для людей опасности нет.
Спутники на орбите Земли обеспечивают нам связь, наблюдение за погодой и навигацию. Их уже сотни, и они настолько важны, что еще в 2016 году одно из управлений Пентагона начало разрабатывать проект отдельного спутника для ремонта спутников — своеобразной скорой помощи на высоте 36 тысяч километров. У этих аппаратов есть собственная функция, способы получать информацию о внешнем мире, алгоритмы действий и оборудование, которым они выполняют эти действия, а значит, они считаются роботами.
В первом модуле мы говорили о том, как много роботов уже сегодня упрощают повседневную жизнь человека: робот-пылесос, голосовые помощники и даже стиральные машины при внимательном рассмотрении оказались роботами. В этой части давайте посмотрим, какие еще задачи можно автоматизировать.
Робот-уборщик не такой компактный и симпатичный, как его дальний родственник робот-пылесос, зато может работать в непогоду и справляться с более серьезными врагами: дорожной пылью, листьями, снегом и наледью. В зависимости от задач его снабжают колесами или гусеницами.
Робот-газонокосилка выглядит как небольшая тележка на колесном или гусеничном ходу, с электрическим или дизельным двигателем. Точно так же, как робот-пылесос, газонокосильщик обходит владения, выполняет задачу и возвращается на базу. Границы участка обозначают кабелем, чуть врытым в землю, а вернуться на базу помогают инфракрасные датчики.
Для борьбы с насекомыми уже тоже придуман робот. Китайские инженеры разработали миниатюрный танк, который детекторами обнаруживает комаров, а затем «расстреливает» их лазерной пушкой.
Чистить бассейн — не слишком увлекательное занятие, а значит, здесь тоже есть простор для автоматизации. Первый тип роботов-чистильщиков плавает по поверхности и собирает мусор. Второй умеет ползать по стенкам и дну точь-в-точь как улитки по аквариуму — и точно так же очищать его от грязи.
Робот-чемодан вмещает от 15 до 30 кг вещей и умеет следовать за хозяином, а точнее, за маячком в его кармане. Потерявшись, он подаст звуковой сигнал, а датчики помогают ему не сталкиваться с людьми и не падать. По лестнице он за вами карабкаться пока не сможет, но для перемещений по аэропорту — это то, что нужно.
В личном ассистенте скоро тоже не будет необходимости. По мере развития робот-помощник научится поддерживать распорядок дня, искать информацию, следить за погодой и пробками на дороге, помогать в домашних делах. Они уже умеют многое из этого — например, робот Zenbo от ASUS заменяет ежедневник, управляет «умным домом», способен отвечать на вопросы, делать фото и видео.
Робот-няня поможет родителям присмотреть за ребенком: камера покажет, что делает малыш, а микрофон поможет услышать, не плачет ли он. Через динамики с ребенком можно общаться, а система дистанционного управления поможет перемещать робота по дому. Робоняню можно попросить показать детям картинки и мультики (разумеется, те, которые укажет родитель).
В медицине на первый план выходят такие качества роботов, как точность, способность работать без устали и отсутствие эмоций. Внедрение роботов в медицину должно решить сразу 2 задачи. Во-первых, человеку больше не придется заниматься рутинной работой, например, выдавать медкарты больных. Во-вторых, роботы помогут врачам совершать высокоточные операции, которые ранее были невозможны. Робот не огорчается, не допускает ошибок и всегда готов к работе.
Робот-медсестра. Роботы могут ухаживать за пациентами, работать в регистратуре, следить за соблюдением назначенного лечения (например, в качестве части автоматизированной системы по выдаче назначенных препаратов из аптеки), забирать в процедурном кабинете и приносить пациентам нужные лекарства. Один из таких роботов, созданных для ухода за детьми и пожилыми пациентами, называется Robear — его представили в Японии еще в 2015 году.
Робот-хирург. Робот-хирург сегодня — подспорье в сложных операциях, требующих тонкой и длительной работы. Так, разработан робот Da Vinci: набор камер и манипуляторов, который работает под руководством оператора-хирурга. Наладив дистанционное управление, инженеры добьются того, что врачу и пациенту будет необязательно встречаться лично даже для операции, так как хирург выполнит все манипуляции удаленно. Робот-хирург Versius помогает врачам проводить самый современный тип операций, когда вся манипуляция происходит через крошечный разрез. Такой метод причиняет пациенту меньше боли и оставляет меньше шрамов, но требует ювелирной точности и целого набора технологий.
Принтер органов. Это некое подобие 3D-принтера, только в качестве материала для «печати» используют собственные клетки пациента. Таким способом уже создают и успешно пересаживают некоторые внутренние органы, кожу, части тела (уши и носы), кости и хрящи. Совсем скоро поиски донора органов уйдут в прошлое — уже известны случаи успешной печати сосудов, клапанов сердца, кожи , выращенных в лаборатории.
Робот-диагност. Роботы уже активно помогают врачам принимать решения: врач вводит данные, система помогает поставить диагноз или выписать лекарство. Следующий шаг — суперкомпьютеры, оснащенные искусственным интеллектом. Так, робот-онколог IBM Watson использует данные 600 тысяч документов и научных работ, чтобы за несколько минут проанализировать все сведения о пациенте и предложить варианты диагноза. Важно, что такие роботы ни в коем случае не заменяют врача, они лишь помогают ему проанализировать информацию и предлагают варианты решения. Например, робот не интерпретирует рентгеновский снимок, а только показывает, что у людей со сходными снимками обнаружен некоторый диагноз, а дальше выводы делает врач.
Экзоскелет. Устройство не научная фантастика, а способ восстановиться после травмы или операции. Экзоскелет ExoAtlet представляет собой жесткий каркас с двигателями и программой. Он помогает пациенту встать вертикально и двигаться так, как если бы он шел сам. Специальные датчики считывают движения тела и усиливают их моторами, так что человек идет как будто сам, но затрачивает гораздо меньше усилий.
Мы уже говорили о том, что роботы могут выглядеть как угодно. Пришло время выяснить, что они могут и вовсе никак не выглядеть. Главное — чтобы они выполняли свою функцию по заданному алгоритму, а результат их работы был ощутим вне виртуального мира.
Александр Ураксин с коллегами разработали робота Веру, который берет на себя рутинные задачи рекрутеров. Послушайте рассказ Александра о том, как Вера помогает «Ростелекому» нанимать новых сотрудников. Какие задачи выполняет робот?
Один из частных случаев софтверных роботов, то есть роботов, не имеющих тела, — это автоматизация бизнес-процессов с помощью роботов или искусственного интеллекта. Такая технология называется «автоматизация процессов роботами» (от английского Robotic process automation — RPA). Суть заключается в том, что программа сначала отслеживает действия пользователя, а затем автоматизирует ихи начинает выполнять самостоятельно.
Один из примеров такой автоматизации — робот Вера, с ним вы уже знакомы.
Одна из китайских страховых компаний автоматизировала процесс обработки заявлений на страховые возмещения. До автоматизации это была ручная работа: сканирование заявлений, архивирование бумаг, занесение данных из заявлений в учетные системы для анализа соответствующими подразделениями. В итоге на каждое заявление в среднем уходило 11 минут, а таких заявлений за день поступало от 70 до 125. Когда процесс автоматизировали, оставалось только отсканировать документы. После этого система распознавания образов стала «сама» заносить данные в систему и в архив по всем правилам компании и законодательства. Весь процесс обработки заявлений стал занимать около полутора минут.
Компания-дистрибьютор ежемесячно получала сводку об отгруженной и проданной продукции от розничной сети и заносила в свои учетные системы. Сложность была в том, что информация поступала в разных форматах и системах (настолько, что у розничной сети и дистрибьютора не было возможности перейти на новую систему). Компания автоматизировала процесс сведения этих данных. В результате время на их обработку на всю сеть в регионе сократилось со 100 человеко-часов до 9 минут.
Консалтинговая компания NFP разработала робота, который сканирует документы контрагентов, распознает их и сортирует. Затем он формирует транзакции в нескольких учетных системах и размещает скан копии документов в нужных разделах сайта Госзакупок. Программный робот заменил сразу несколько десятков операторов, которые разбирали документы вручную. Выделенный оператор делает всю работу за 578,7 дня (и это без учета проверки). Выделенный оператор с помощью робота RPA сделает ту же работу за 19,3 дня (уже с проверкой).
Один из фармацевтических холдингов использовал RPA для анализа претензий клиентов. Система автоматически принимает, проверяет и обрабатывает претензии клиентов. С помощью сложного алгоритма робот одобряет или отклоняет заявку, а затем переходит к следующей. В компанию поступает около 5000 обращений в месяц, и для ручной обработки требовалось 45 операторов. Внедрение, настройка и тестирование робота заняли полтора месяца, зато после этого тот же объем заявок может обработать один оператор.
Принцип работы его актуаторов напоминает двигатель внутреннего сгорания
Инженеры разработали актуатор для роботов, устройство которого напоминает двигатель внутреннего сгорания. Его основной элемент — миниатюрная камера сгорания, в которую подается горючая смесь, которая затем поджигается с помощью высоковольтного разряда. Давление расширяющегося нагретого газа затем может использоваться для совершения работы, например для приведения робота в движение. Созданный на основе актуатора четырехногий робот способен совершать прыжки на высоту в 20 раз превышающую длину его собственного тела, ползать со скоростью 5,8 длины тела в секунду и переносить грузы в 22 раза превосходящие собственный вес. Статья опубликована в журнале Science.