Интервью с лауреатом премии имени Гамова математиком Верой Сергановой
Одним из двух лауреатов премии имени Георгия Гамова 2019 года, наряду с химиком Валерием Фокиным из Университета Южной Калифорнии, стала Вера Серганова, профессор Университета Калифорнии в Беркли. N + 1 поговорил с Верой Сергановой о том, как в математике рождаются идеи, как они влияют на физиков и чем математика XXI века отличается от математики минувших веков.
N + 1: Вы так долго работаете в знаменитом Беркли. Расскажите, как там работается математику, как организован обмен идеями?
Вера Серганова: Да, правда, долго я там — 27 лет, с 1992 года. Да обычно никак не организован. Конечно, есть семинары, на семинарах делаются доклады. Но очень много простых связей. У тебя возникает вопрос — ты идешь к коллеге. Коллега отвечает на твой вопрос, или наоборот. Иногда в результате получается работа.
Я сейчас очень много работаю на расстоянии — у меня соавторы в основном не в Беркли, они в других местах. Мы разговариваем по скайпу. Это так замечательно, когда находишь людей, которые думают про те же вещи. И почти не важно, кто они по национальности. Математик — он всегда математик.
Но сохраняется ли ценность влиятельного университета как места работы, где рядом много нужных коллег — как это было в больших советских институтах?
Мне кажется, сейчас это менее важно. Когда вы уже нашли, с кем вы работаете, то уже не очень важно, где этот человек числится. Но находить себе подобных, чтобы работать, все-таки проще лично. Поэтому конференции — это очень важная вещь. На конференции кто-то выступает, ты слушаешь и понимаешь, что ты тоже что-то можешь здесь сделать. Начинается совместная работа.
Но математики много работают и в одиночестве, совсем не обязательно иметь соавтора. Это не такая командная работа, как экспериментальная наука. Кто как.
Понятно, что математика — это не коллайдер. Но все равно ведь важно иметь возможность подойти к коллеге и что-то обсудить, особенно на раннем этапе?
О да, конечно. Для меня этот этап был еще в Москве. Прекрасное было научное сообщество, начиная с замечательной математической школы. Была замечательная атмосфера, все друг другу очень помогали. И это было очень важно.
Американская культура математиков отличается?
Отличается! Например, семинары здесь проходят более формально, чем в России. Здесь очень редко бывает, чтобы человек оставался дольше назначенного времени.
Хотя разница не такая уж и большая. Мне кажется, математики примерно все везде одинаковые. Математики — это национальность, это такой специальный народ. Поскольку я училась в России, мне не всегда понятно, каково молодому человеку здесь, в США, входить в науку.
Вы преподаете в Беркли?
Да, преподаю. Осенью читаю общие курсы по математике, их слушают все будущие ученые — химики, физики. А весной буду, наоборот, преподавать алгебры Ли для аспирантов — только математиков. Но больше я люблю преподавать аспирантам.
То есть вы уже вводите молодых людей в науку. Как вы это делаете?
Честно говоря, я никогда про это не думала. Разговариваешь с ними, они задают вопросы. Я отвечаю на вопросы. У меня нет никаких теорий по этому поводу.
А каким был ваш путь, вы направленно шли заниматься теорией представлений?
Нет, это получилось случайно. Мои научные руководители тогда этим интересовались, и я этим заинтересовалась. Может быть, я бы заинтересовалась чем-то другим. Некоторые люди очень талантливые и с самого начала ставят себе задачи сами, но мои первые задачи были мне поставлены.
Вы помните их — свои первые задачи?
Самая первая задача — я вычисляла автоморфизмы и вещественные формы супералгебр Ли. Это была чисто алгебраическая задача — на 3-4 курсе университета. Это была не очень трудная задача, ученическая. Я работала тогда под руководством [Дмитрия] Лейтеса, ходила на семинар [Юрия] Манина.
В принципе, было понятно, как ее решать, не было никакой загадки, надо было аккуратно разобраться. Это была классификационная задача. А потом я занималась классификацией симметрических суперпространств, которая вроде как используется физиками.
Моя первая самостоятельная задача у меня долго-долго не получалась — это формула характера неприводимых представлений конечномерных супералгебр Ли. Я была тогда на последнем курсе и начала работать с Иваном Пенковым, в то время тоже студентом Манина. Мы много лет ее решали, в какой-то момент думали, что мы ее решили, — а потом я нашла ошибку.
Только потом, уже приехав в Америку, в Гарвард, я в конце концов эту задачу решила. Решила, разговаривая уже с другим человеком — Иосифом Бернштейном.
Гамовская премия вручается с 2015 года «членам русскоязычной научной диаспоры за выдающийся вклад в мировую науку». Ее учредила ассоциация русскоязычных ученых в США RASA-USA в память о выдающемся советском и американском физике Георгии Гамове.
Вера Серганова получила награду «за выдающиеся работы по теории представлений супералгебр Ли». Валерий Фокин был отмечен «за пионерские химические исследования и разработку эффективных методов конструирования химических веществ». Профессор Серганова стала первым лауреатом-женщиной за всю историю премии.
Церемония вручения премии 2019 года состоялась на юбилейной X ежегодной конференции RASA-USA 9 ноября в Чапел-Хилл (Северная Каролина). Лауреаты получили памятные дипломы и денежный приз. С этого года также планируется посвящать лауреатам тематические выпуски профильных научных журналов издательства Pleiades Publishing, с которым сотрудничает RASA.
На чем основан ваш интерес к таким абстрактным вещам?
Для меня они очень конкретные, совсем не абстрактные. Да и не такие уж абстрактные эти вещи, которыми я занимаюсь. Там очень много комбинаторики. Я так вижу эту работу: есть какая-то загадка, и ее надо раскрыть, объяснить.
А потом задачу, которую я решила, через некоторое время решили другим способом — и это было прекрасное новое решение, через категорификацию. Я когда прочитала это решение, я стала больше интересовать теорией категорий, тензорными категориями.
Я не знаю, почему мне интересно представление о какой-либо алгебраической структуре. Так сложилась моя жизнь, мне это интересно.
А физическими приложениями вы не интересуетесь?
Не то чтобы мне была неинтересна физика. Но мне очень трудно общаться с физиками, как будто мы говорим на разных языках. Они иногда даже спрашивают меня, какой-нибудь физик может написать: «Как устроено представление вот такой супергруппы?» Ему зачем-то надо это знать, но я никогда не могу понять, почему это важно.
Мне очень приятно, конечно. И я отвечаю, как устроено, — если знаю. Потому что есть математическая задача, ее можно вычленить. И я доверяю физикам, раз им это нужно. Но я сама не смогла бы заниматься физикой.
Почему?
Потому что физики делают какие-то допуски, пренебрегают чем-то. Математик обычно хочет дать точный ответ, а у физиков это не совсем так. И я никогда не могла понять, чем надо пренебрегать.
Хотя теоретические физики мало отличаются от математиков. Разве только тем, что у них не такие строгие доказательства. Но как они додумываются в своих теориях, что нужно рассматривать, например, струну? Вот теория относительности — вроде понятно, но непонятно, как Эйнштейн придумал, что кривизна — самое главное в уравнении Эйнштейна.
А как вы приходите к постановке задач и к решениям?
Одна вещь ведет к другой, обычно из старой работы возникают новые вопросы. Иногда новое начинается с того, что кто-то задает тебе вопрос и ты понимаешь, что что-то можешь в этом направлении сделать. Но часто у тебя самой возникает вопрос, как устроены те или иные представления. И вот ты уже не спишь, а только и думаешь — так или эдак.
Я не могу объяснить, почему это такая загадка, которую ты очень хочешь понять. Или я вдруг утром просыпаюсь и думаю: боже мой, я же понимаю, как эту задачу решить.
Откуда берутся идеи — я не знаю. Когда я просыпаюсь и мне никуда не надо идти, я могу думать некоторое время, лежа в постели. И вот тогда приходят самые лучшие мысли. Вообще в отношении идей математики очень разные. Я говорю про себя, но я тут не могу обобщать.
То есть математику, чтобы думать, даже карандаш и бумага не нужны?
Нужны! Но утром можно без них. У меня была замечательная коллега Марина Ратнер, которая мне объяснила, как мы работаем. У нас все это получается только потому, что мы постоянно думаем. Вот ты идешь в магазин, ставишь коляску — и все время думаешь, думаешь, думаешь. И так все время — ты просто не можешь не думать.
Это началось все с решения задачек — были задачки, которые не отпускали тебя, пока ты не решишь. А потом ты сам начинаешь придумывать задачки — только и всего. Здесь на конференции [RASA-USA] все говорят о какой-то пользе от своих работ. И мне даже как-то стыдно, потому что от меня никакой пользы нет!
Это бесконечная дискуссия о пользе фундаментальной науки!
Ну да. Вот сейчас физики начали использовать p-адические. Кто бы мог подумать, что p-адический анализ пригодится в физике? Но как они это используют, я не могу понять! Иногда мне кажется, что если бы этого аппарата не было, они бы придумали что-то другое. А иногда я думаю, что существующий математический аппарат все-таки подталкивает физиков к новым теориям.
Вот например есть такая алгебра Ли E8. Некоторые физики считают, что эта алгебра E8 все объясняет. Почему? Это самая большая исключительная алгебра. Еще есть супергравитация — это еще одна вещь, с которой я хочу разобраться с точки зрения математики. Там добавляются нечетные переменные и уравнения пишутся, добавляя суперсимметрию. Насколько это подтверждается экспериментом? Как я понимаю, пока нет.
Вы находите красоту в своих задачах?
Да, конечно! Казалось бы, математика, тензорные категории — это что-то, что придумано людьми. Но на самом деле в них есть гармония — когда ты понимаешь, как все это устроено, и все становится на свои места, это какая-то красота пейзажа. Вы смотрите и видите, как все здорово, как все сложилось. Как вычисление объясняется общими принципами.
Общие принципы в математике — это очень важно. Мой замечательный одноклассник Миша Капранов говорит, что все надо доказывать из общих принципов. И в конце концов все оказывается очень просто, когда все понимаешь. В сущности, уравнение Эйнштейна — это очень просто. Вот в этом красота.
Математика — это язык. В математике XXI века или даже XX-го очень много всего было сделано по поводу языка, почти философского. Очень много общих понятий и определений, которые позволяют решать разные задачи — в математике и не только.
А какой была математика до этого, отличалась?
Мне кажется, да. Математика меньше была языком. Меньше давали определений и больше доказывали теорем. Математика была раньше более экспериментальная — как прямоугольный треугольник. А теперь мы даем определения — в какой-то мере это возврат к Евклиду, когда объект определяется через его свойства. Это аксиоматический подход, и он сейчас играет он важную роль.
Возьмите простую вещь — понятие группы. Где оно только ни используется, где только ни возникает. Общие методы теории групп применяются во многих областях математики и не только математики. Вот возникает понятие группы, пучка, категории, пункта. И это понятие может применяться в разных направлениях. И мне кажется, что такое развитие математики — это XXI век.
Как математики вводят понятия, дают определения?
Все начинается с примеров. Какое-то абстрактное понятие можно определить, дав пример. А понятие — это обобщение.
Например, понятие производного функтора, производной категории, пришло постепенно — сначала была теорема, были топологии. А потом это все собралось вместе. Возникла наука о том, как обращаться с комплексами. Теперь это аппарат, который все используют, все говорят на этом языке.
Какое ваше любимое определение?
Определение — не знаю. У меня есть любимая теорема. Я много лет занималась этими супергруппамми, супералгебрами. И было всегда ощущение, что это частный пример чего-то общего. И есть замечательная теорема Делиня, которая говорит, что если у вас есть тензорная симметрическая моноидальная категория и она достаточно маленькая, то это и есть представление супергруппы.
Эта теорема у меня сейчас любимая. Она говорит, что на самом деле пример супергрупп достаточно универсален. Придает смысл всему тому, чем я занималась.
Есть некоторые симметрические полиномы, которые зависят от параметра, и при определенном значении параметра они соответствуют задаче из теории представлений. И у меня есть такая идея, что, используя тензорную категорию, где параметр t — это размерность образующего объекта, мы можем получить все семейство, решая те же задачи. На лекции я это иллюстрировала цитатой из Хармса:
Жил один рыжий человек, у которого не было глаз и ушей.
У него не было и волос, так что рыжим его называли условно.
Говорить он не мог, так как у него не было рта.
Носа тоже у него не было.
У него не было даже рук и ног.
И живота у него не было, и спины у него не было, и хребта у него не было, и никаких внутренностей у него не было.
Ничего не было!
Так что непонятно, о ком идет речь.
Уж лучше мы о нем не будем больше говорить.
И только математик говорит: «Нет будем, будем!» Это и есть теория представлений без векторных пространств — человек, у которого ничего нет.
Вот какая есть важная идея. Люди долгое время рассматривали поверхности — то, что называется «многообразие», — и все делали там через точки. Идея такая, что вместо того, чтобы рассматривать точки, вы с самого начала берете функции. Рассматриваете функции как некий алгебраический объект. И из этих функций вы восстанавливаете все — и точки не нужны.
Беседовала Александра Борисова
И ради этого изменили свою форму
Физики из Израиля объяснили, почему форма лепестков роз отличается от формы таких же частей цветка у других растений. Ученые описали поверхность лепестка несовместимостью Майнарди — Кодацци — Петерсона — геометрической нестабильностью, которая возникает в том случае, когда кривизна объекта не позволяет ему уместиться во внешнем пространстве (в случае розы это евклидово трехмерное пространство). Авторы отметили, что их результат станет полезным для создания материалов изменяющейся формы. Свою работу на стыке физики, математики и биологии исследователи опубликовали в Science.