Идеальное колесо

В чем секрет химической устойчивости автомобильных шин

Шины — удивительный объект с точки зрения химии и материаловедения. Наверное, самое странное в них заключается в том, что если взять всю резину в одной шине, то окажется, что она образует одну огромную молекулу. С другой стороны, мало кто задумывается над тем, что резина составляет меньше половины массы обыкновенной шины. А почему так? И что еще входит в состав шин помимо резины? На эти вопросы мы ответим в нашем материале, созданном в партнерстве с производителем шин Toyo Tires.

Магический треугольник

Создание идеального колеса — сложнейшая задача оптимизации, к которой человечество идет уже сотни лет. К колесу предъявляется огромное количество требований, но есть три самых главных («магический треугольник»): высокое сцепление с дорогой, низкое трение качения и маленький износ. Шина на пути к этому идеальному колесу появилась не так давно — всего лишь в XIX веке.

Сцепление с влажной поверхностью позволяет колесам катиться по дороге без проскальзывания и быстрее тормозить. За сцепление отвечает рисунок протектора, а также сама поверхность шины и ее химические и адгезионные свойства.

Трение качения — это сила, которая сопротивляется вращению колеса. Вообще говоря, потери на трение качения возникают из-за неупругих деформаций колес. Чем сильнее эти потери, тем больше топлива надо на то, чтобы проехать те же самые сто километров (закон сохранения энергии никто не отменял).

Износ шины — самая простая и интуитивно понятная из этих величин. Во время езды колесо подвергается миллионам сжатий и растяжений, и каждое медленно, но неумолимо разрушает материалы, из которых оно сделано. Чем больше таких циклов сжатия и растяжения колесо сможет выдержать, тем дольше оно прослужит.

Обретение вулканизации

В 1830-х годах американский изобретатель и химик Чарльз Гудьир экспериментировал с каучуком, природным полимером, содержащемся в соке гевеи. На тот момент различные компании уже пытались использовать каучук. Например, Чарльз Макинтош пропитывал им ткани для изготовления непромокаемых плащей, а сам Гудьир участвовал в разработке трубок для надувания спасательных плавсредств. Из каучука также делали ластики для карандашей.

Однако серьезный недостаток натурального каучука состоит в том, что он быстро портится при контакте с воздухом: окисление полимера делает материал хрупким, легко поддающимся разрушению. Над тем, чтобы избавить его от этого качества, и работал американский химик.

Сейчас понятно, что нестойкость каучука связана с самой структурой полимера. Каучук — это цис-полиизопрен, как и многие органические полимеры его можно представить себе как цепочку из углеродных атомов, на которую, с определенным шагом, навешены небольшие группы из других атомов.

От крайне стойкого к окружающим воздействиям полиэтилена или полипропилена каучук отличается тем, что некоторые связи между атомами углерода в его основной цепочке — двойные. Именно они являются слабым местом природного каучука. Кислород (точнее, его активные формы) способен легко атаковать эти кратные связи и разрушать их, сильно меняя при этом свойства материала в целом.

В 1839 году Гудьир обнаружил, что нагретая печью смесь каучука с серой превращается в необыкновенно плотный черный эластичный материал, гораздо более устойчивый по сравнению с исходной легкоплавкой полимерной массой. Некоторые свидетельства указывают на то, что это открытие было сделано случайно — якобы химик попросту уронил каучуковый шарик с серой на печь. Но с другой стороны, известно, что Чарльз Гудьир изучал возможность обезвоживать каучук серой. Так или иначе химику удалось открыть процесс вулканизации.

С точки зрения химии суть этого процесса заключается в преобразовании части тех самых двойных связей в цепях каучука. Сера способна точно так же, как и кислород, атаковать их, но вместо полного разрушения в случае серы образуются так называемые сульфидные мостики — прочные связи, соединяющие между собой соседние цепочки каучуков и образующие сетчатую структуру. Полимер становится более упругим и плотным, при этом уменьшается количество «слабых мест» в его структуре.

В пределе можно считать, что все молекулы каучука в вулканизированном образце оказываются связаны в единую молекулу этими сульфидными мостиками.

Победоносный путь каучука

В 1888 году британский ветеринар Джон Данлоп создал и запатентовал шину из вулканизированного каучука — для велосипеда своего сына. По сути, она представляла собой надутый шланг, закрепленный на ободе колеса.

В 1895 году первые шины из вулканизированной резины были установлены на автомобиле, участвовавшем в гонке Париж-Бордо-Париж. Авторы идеи — Андре и Эдуард Мишлен. К сожалению, гонку машине выиграть, мягко говоря, не удалось, но тем не менее автомобиль справился с почти 1200 километрами трассы.

Одновременно с ростом популярности автомобилей росло и потребление шин — так за пару десятков лет возникла новая огромная промышленность.

Почему вулканизированный каучук стал таким удобным материалом для колес? В первую очередь, это определяется той самой тройкой свойств — сцепление с поверхностью, трение качения и износ. Благодаря эластичности шина из резины обеспечивает плотное сцепление даже с неровной дорогой, к тому же отсутствие хрупких элементов уменьшает износ по сравнению с металлическими или тем более деревянными колесами.

Стоит заметить, что резиновые шины во многом хороши для обычных дорог, но если мы сменим типичное асфальтовое покрытие на стальные рельсы, то ситуация радикально поменяется. Стальные колеса обладают гораздо меньшим трением качения — оно в 5, а то и в 10 раз меньше, чем у современных автомобильных шин. Сцепление стальных колес с поверхностью определяется во многом весом поезда, для легких автомобилей такой подход не подойдет.

Но можно вспомнить, что резиновые шины используются и на поездах, к примеру на линии M2 метро Лозанны (Швейцария). Там они позволяют бороться с высокой крутизной путей, которая в другой ситуации потребовала бы наличия зубчатой передачи.

Не каучуком единым

С точки зрения механических свойств каучук очень хорош — до сих пор нет дешевых искусственных аналогов, обладающих теми же свойствами. Никакого секрета в этом нет — цепочки природного каучука устроены так, что все боковые «висят» строго по одну сторону от цепи. Добиться того же в промышленном синтезе каучука практически невозможно — тот контроль над сборкой цепи, который обеспечивают сложные ферменты растений, не могут повторить сравнительно более простые металлорганические катализаторы Циглера-Натта.

Но есть и недостатки, причем химической нестабильностью природного каучука они вовсе не ограничиваются. Выращивают каучуконосные культуры в основном в Юго-Восточной Азии и Бразилии, к тому же сырьевая база ограничена и едва ли покрывает весь спрос на каучуки.

Поэтому в шинах доля природного каучука составляет всего около 10-15 процентов, еще около 20 процентов приходится на искусственные полимеры — полиизопрен, полибутадиен, сополимеры полибутадиена с полистиролом и с полиизобутиленом. Главное преимущество искусственных каучуков заключается в относительно большей устойчивости к окислению и ультрафиолетовому излучению.

К нерезиновой части шины относятся стальные корды и всевозможные наполнители: сажа, диоксид кремния (основной компонент стекла и песка) и антиоксиданты. Роль антиоксидантов заключается в том, чтобы «отлавливать» опасные для каучуков и других полимеров активные формы кислорода (например, озон или перекись) и превращать их в безвредную воду или другие молекулы. Кроме того, в шинах остаются различные активаторы вулканизации, например оксид цинка.

Точно спрогнозировать, как различные добавки влияют на свойство шин, достаточно сложно. Для этого необходимо моделировать поведение микро- и наноразмерных частиц, а также окружающих их полимерных цепей и сетей на наноуровне. Компания Toyo Tires впервые в шинной отрасли воспользовалась методами молекулярной динамики, чтобы предсказать энергетические потери в шине по ее микроструктуре.

Грубо говоря, специалисты компании способны оценить, как сильно нагреется шина от наезда на неровность на дороге. Это помогает понять, как уменьшить этот нагрев. Например, расчеты показывают, что подавление физического перемещения молекул резины снижает те самые энергетические потери в шинах. Поэтому в шинах необходимо добиваться более прочных связей между молекулами полимеров и наполнителем.

Интересно заметить, что методы молекулярной динамики часто применяются для прогнозирования поведения белковых молекул и поиска новых лекарств.

Эта и другие разработки Toyo Tires, связанные со строением шины на наноуровне, являются частью технологии Nano Balance, которая, по своей сути, позволяет спроектировать материал с требуемыми оптимальными свойствами, а затем создать его и испытать.

 

Сажа и диоксид кремния могут составлять до 40 процентов массы всей шины — их главная роль состоит в армировании (усилении) вулканизированной резины. Такие добавки дополнительно увеличивают упругость шины в 10-20 раз, что уменьшает трение качения.

Стоит отметить, что сажа используется в шинах уже довольно давно, примерно с 1920-х годов. Последние десятилетия все чаще начинает использоваться диоксид кремния — он оказывается гораздо эффективнее с точки зрения уменьшения трения качения и усиления сцепления с влажной дорогой, а каждый процент эффективности означает не только уменьшение расхода топлива, но и уменьшение выбросов углекислого газа в атмосферу. Поэтому шины с добавкой диоксида кремния иногда называют «зелеными».

Главное — маскировка

Но с диоксидом кремния есть и свои проблемы. В химии есть такой принцип — подобное растворяется в подобном. К сожалению, каучуки и другие полимеры совершенно не похожи по химическим свойствам на диоксид кремния, место их контакта можно сравнить с несмешивающимися маслом и водой.

Это означает, что при простом смешивании компонентов мы получим отдельные большие слипшиеся комки наполнителя и отдельные блоки резины, в которых наполнителя нет. При сжатии-растяжении наполнитель будет растрескиваться и разрушаться, на это будет расходоваться лишняя энергия, а значит, увеличится трение качения.

Но и здесь есть свое решение. Чтобы все-таки смешать масло с водой и получить эмульсию (например, молоко), нужны поверхностно активные вещества, такие как мыло.

Так и с шинами — требуется вещество, способное покрыть поверхность диоксида кремния и «замаскировать» ее, сделав внешне похожей на окружающие полимеры. Такими веществами являются, например, бис-(триэтоксисилилпропил)тетрасульфид и его аналоги. Их молекулы состоят из двух частей, одна из которых легко связывается с диоксидом кремния, а другая — с сеткой вулканизированного полимера.

Даже имея такое почти идеальное «средство маскировки», не обойтись без надежной технологии распределения его по поверхности частиц. Если маскирующих молекул будет слишком мало, то частицы диоксида кремния все равно слипнутся. Молекулы маскирующего агента, увы, сами по себе способны агрегировать — не связываясь с поверхностью частиц. Для борьбы с этим явлением у компании Toyo Tires, например, есть специальная методика высокоточного смешивания — контроля над соотношением различных компонентов в смеси. Она основана на возможности отслеживать скорость реакции между маскирующим агентом и окисью кремния.

По оценкам представителей шинной промышленности, с 1890-х годов за счет добавок и модификации строения колес трение качения удалось снизить примерно втрое.

Добавка диоксида кремния, по сравнению с классической сажей, позволяет увеличить и сцепление с влажной поверхностью дороги. Дело здесь в том же самом принципе «подобное растворяется в подобном».

Сажа и резина — так называемые неполярные вещества, а вода — полярная, как и диоксид кремния. Полярность означает, что в молекуле вещества есть область с небольшим избытком отрицательного заряда и область с небольшим избытком положительного заряда. У воды это, соответственно, атом кислорода, с одной стороны, и два атома водорода, с другой.

Любопытно заметить, что и сцепление с дорогой и трение качения на самом деле регулируются одним и тем же параметром — коэффициентом потерь, или tg σ. Просто за трение качения отвечает коэффициент потерь при небольших частотах деформаций в шине, а за сцепление с дорогой — высокочастотный. Поэтому при прямых попытках увеличить сцепление будет увеличиваться и трение качения. В результате оказывается, что наращивать одновременно оба параметра чрезвычайно сложно. То, что это удалось сделать с помощью окиси кремния — большой успех. 

На микроскопическом уровне

Свойства готовой шины, как теперь понятно, зависят не только от массовых долей добавок, но и от их распределения в резине. И для проверки того, насколько свойства готовых шин соответствуют предсказаниям моделей Toyo Tires привлекла синхротронные методы, которые позволяют напрямую, на наноуровне, посмотреть, как деформируется материал.

Синхротронное излучение — это вид рентгеновского излучения, получаемого на ускорителях элементарных частиц. Благодаря малой длине волны такое излучение легко проникает сквозь тонкую пластинку резиновой смеси, оставляя тени на детекторе на месте частиц-наполнителей. Высокая интенсивность излучения позволяет записывать «кино» — изменения, происходящие в микро- и наноструктуре образца за доли секунды.

Так, впервые в шинной индустрии, компанией были получены синхротронные данные о том, как ведут себя частицы-наполнители, равномерно и неравномерно распределенные по резиновой смеси. В последнем случае под действием динамических нагрузок возникают дополнительные энергетические потери. 

Внимательно следя как за химическим составом, так и за поведением резиновых смесей на микроскопическом уровне, ученые и инженеры приближаются к созданию идеального колеса. Каждое следующее поколение материалов позволяет выиграть еще несколько процентов и немного расширить «магический треугольник» свойств, делая шины безопаснее, надежнее и эффективнее.

Но материалами возможность оптимизировать шину не ограничивается — о том, как разработать правильный рисунок протектора и внутреннюю структуру покрышки мы расскажем в следующий раз.

Владимир Королёв

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Превосходство кванта

Разбираетесь ли вы в вычислениях, использующих принципы квантовой механики?