В самом простом смысле зрение — это в первую очередь два глаза, которые получают и обрабатывают информацию об окружающем нас мире. На самом деле человеческое зрение, разумеется, устроено гораздо сложнее, и информация от органов чувств (то есть глаз) проходит несколько этапов обработки: как самим глазом, так и далее — мозгом. Вместе с офтальмологической клиникой 3Z рассказываем, как зрительная система человека формирует изображение действительности, и объясняем, почему мы не видим мир перевернутым, маленьким, трясущимся и разделенным на две части.

Из школьного курса физики вы можете помнить про линзы — приборы из прозрачного материала с преломляющей поверхностью, способные, в зависимости от своей формы, собирать или рассеивать попадающий на них свет. Именно линзам мы обязаны тому, что в мире существуют фотоаппараты, видеокамеры, телескопы, бинокли и, конечно, контактные линзы и очки, которые носят люди. Человеческий глаз — это точно такая же линза, а точнее — сложная оптическая система, состоящая из нескольких биологических линз.


Первая из них — роговица, внешняя оболочка глаза, наиболее выпуклая его часть. Роговица — это вогнуто-выпуклая линза, которая принимает лучи, исходящие из каждой точки предмета, и передает их дальше через переднюю камеру, заполненную влагой, и зрачок к хрусталику. Хрусталик, в свою очередь, представляет собой двояковыпуклую линзу, по форме напоминающую миндаль или сплющенную сферу.

Двояковыпуклая линза — собирающая: лучи, проходящие через ее поверхность, собираются за ней в одну точку, после чего формируется копия наблюдаемого предмета. Интересный момент состоит в том, что изображение объекта, сформированное на заднем фокусе такой линзы, — действительное (то есть соответствует тому самому наблюдаемому предмету), перевернутое и уменьшенное. Изображение, которое формируется за хрусталиком, поэтому, точно такое же.

То, что изображение уменьшенное, позволяет глазу видеть объекты, по величине в несколько десятков, сотен и тысяч раз превосходящие его по размеру. Другими словами, хрусталик компактно складывает изображение и в таком же виде отдает его сетчатке, выстилающей бо́льшую часть внутренней поверхности глаза — места заднего фокуса хрусталика. Вместе роговица и хрусталик, таким образом, — это компонент зрительной системы, который собирает рассеянные лучи, исходящие от объекта, в одну точку и формирует их проекцию на сетчатке. Строго говоря, никакой «картинки» на сетчатке на самом деле нет: это всего лишь следы фотонов, которые затем преобразуются рецепторами и нейронами сетчатки в электрический сигнал.


Этот электрический сигнал затем проходит в головной мозг, где обрабатывается отделами зрительной коры. Все вместе эти отделы отвечают за то, чтобы преобразовать сигналы о расположении фотонов — единственную информацию, которую получает сам глаз — в имеющие смысл образы. При этом мозг — система взаимосвязанная, и за то, как мы воспринимаем то, что происходит в действительности, отвечают не только наши глаза и зрительная система, но и другие органы чувств, способные получать информацию. Мы не видим мир перевернутым благодаря тому, что у нашего вестибулярного аппарата есть информация о том, что мы стоим ровно, двумя ногами на земле, и дерево, растущее из земли, соответственно, перевернутым быть не должно.

Подтверждение этому — эксперимент, который поставил на самом себе американский психолог Джордж Стрэттон (George Stratton) в 1896 году: ученый изобрел специальное устройство — инвертоскоп, чьи линзы также могут переворачивать изображение, на которое смотрит тот, кто их носит. В своем устройстве Стрэттон проходил неделю и при этом не сошел с ума от необходимости передвигаться в перевернутом пространстве. Его зрительная система быстро адаптировалась под измененные обстоятельства, и уже через пару дней ученый видел мир таким, каким привык видеть его с детства.

Другими словами, в мозге нет специального отдела, который переворачивает изображение, поступившее на сетчатку: за это отвечает вся зрительная система головного мозга, которая, с учетом информации от других органов чувств, позволяет нам точно определить ориентацию объектов в пространстве.

Клиники 3Z – крупнейшая в России сеть офтальмологических клиник, которая насчитывает 36 диагностических центров и клиник в восьми регионах России. За 15 лет работы офтальмохирурги 3Z провели более 210 тысяч операций, из них около 65 тысяч — по передовым технологиям коррекции зрения.

Что касается самой сетчатки, то для того, чтобы понять, как работает зрение, нужно также подробнее рассмотреть ее функционирование и строение. Сетчатка представляет собой тонкую многослойную структуру, в которой находятся нейроны, принимающие и обрабатывающие световые сигналы от оптической системы глаза и отправляющие их друг другу и в мозг для дальнейшей обработки. Всего в сетчатке выделяют три слоя нейронов и еще два слоя синапсов, получающих и передающих сигналы от этих нейронов.

Первые и главные нейроны, участвующие в обработке светового стимула, — это фоторецепторы (светочувствительные сенсорные нейроны). Два основных вида фоторецепторов в сетчатке — это палочки и колбочки, получившие свои название за палочко- и колбочкообразную форму, соответственно. Палочки и колбочки заполнены светочувствительными пигментами — родопсином и йодопсином соответственно. Родопсин в разы чувствительнее к свету, чем йодопсин, но только к свету с одной длиной волны (около 500 нанометров в видимой области) — именно поэтому палочки, содержащие родопсин, отвечают за зрение человека в темноте: они улавливают даже мельчайшие лучи, помогая нам различать очертания предметов, при этом не позволяя точно определить их цвет. А вот за цветовосприятие уже как раз отвечают «дневные» фоторецепторы — колбочки.

Светочувствительный йодопсин, входящий в состав колбочек, бывает трех видов в зависимости от того, к свету с какой длиной волны он чувствителен. В нормальном состоянии колбочки человеческого глаза реагируют на свет с длинной, средней и короткой волной, что примерно соответствует красно-желтому, желто-зеленому и сине-фиолетовому цветам (а если проще — красному, зеленому и синему). Колбочек, которые содержат тот или иной вид йодопсина, в сетчатке разное количество, и их баланс как раз и помогает различать все краски окружающего мира. В случае, когда колбочек с тем или иным видом йодопсина, недостаточно или просто нет, говорят о наличии дальтонизма — особенности зрения, при котором недоступно распознавание всех или некоторых цветов. Вид дальтонизма напрямую зависит от того, какие именно колбочки «не работают», но самым распространенным у человека считается дейтеранопия — при ней отсутствуют колбочки, чей йодопсин чувствителен к свету со средней длиной волны (то есть плохо воспринимают зеленый цвет или не воспринимают его вообще).


При этом палочки и колбочки покрывают не весь соответствующий слой поверхности сетчатки: в ней присутствует так называемое слепое пятно, не содержащее светочувствительных рецепторов вообще. Так как их нет, свет в границах пятна обрабатывать нечему — именно поэтому те объекты, которые попадают в «поле зрения» слепого пятна, для человека невидимы. Зрение любого человека (к счастью или к сожалению) не позволяет увидеть эти слепые пятна, но некоторые заболевания приводят к появлению скотомы (то есть слепого участка в поле зрения) и вне соответствующего места на сетчатке.


Сигнал, получаемый и обрабатываемый фоторецепторами, затем переходит к другому слою нейронов — биполярным клеткам. Такие клетки — своеобразные посредники, которые связывают колбочки и палочки с ганглионарными клетками — нейронами сетчатки, которые генерируют нервные импульсы и затем передают их по зрительному нерву в зрительную кору головного мозга через латеральное коленчатое тело (небольшой бугорок на поверхности таламуса).

Латеральное коленчатое тело, принявшее сигналы от ганглионарных клеток сетчатки, сначала передает их первичной зрительной коре — наиболее эволюционно древней части зрительной системы головного мозга (для удобства и лаконичности ее также называют V1). В этом месте начинается формирование действительного изображения того, что происходит вокруг нас, — фотоны, принятые глазом, начинают обретать форму, и цвет, очертания, наличие движения и другие аспекты изображения превращаются в электрическую активность. В зависимости от того, что эти сигналы передают (движение объекта в пространстве или же его форму), они далее посылаются для обработки по вентральному и дорсальному пути в другие отделы зрительной коры. К примеру, средняя височная зрительная область (ее порядковый номер — пять, то есть кратко ее называют V5) считается частью дорсального пути, так как отвечает за обработку движения, а четвертая зона (V4) отвечает за обработку цвета, поэтому относится к вентральному пути.

Современные технологии помогают решить проблемы со зрением. Для коррекции близорукости, дальнозоркости и астигматизма в клиниках 3Z собраны 6 лучших мировых практик коррекции зрения: ReLEx SMILE, ReLEx FLEx, Femto Super LASIK, Super LASIK, ФРК и имплантация факичных интраокулярных линз. Каждому пациенту технология подбирается индивидуально, чтобы обеспечить наилучший результат. Поэтому острота зрения после операции часто составляет 120% или даже 150%.
Отделы, отвечающие за обработку информации от органов чувств и, как мы уже выяснили, помогающие воссоздавать картину реального мира зрительной системе, — не единственные участки мозга, которые участвуют в процессе зрения. Важную роль также играет и моторная кора головного мозга, отвечающая за обработку движений. Важна моторная кора потому, что глаза все время двигаются: перемещение взгляда помогает следить за движущимся изображением или рассмотреть то, что не попадает в поле зрения целиком. 

В спокойном состоянии (тогда, когда мы смотрим на статичный предмет или даже на фон) глаза все равно двигаются, совершая очень быстрые синхронные движения (до 80 миллисекунд) — саккады. Информация о том, что глазу нужно изменить положение, посылается к нему из моторной коры. Чуть раньше точно такой же (или, по крайней мере, похожий) сигнал посылается к зрительной коре в качестве так называемой «эфферентной копии». Благодаря этому зрительная кора получает информацию о том, что глаз будет двигаться, еще до того, как это движение начнется — это помогает зрительной коре игнорировать возможные мелкие движения. 


Наконец, осталось разобраться еще с одним моментом — тем, почему картинка действительности, которую мы видим, не разделена на две части. У человека, как и других позвоночных, одна пара глаз. Расположены они достаточно близко друг к другу: отверстия в глазницах черепа обеспечивают расположение глаз таким образом, что у каждого из глаз, с одной стороны, свое поле зрения (около 90 градусов на каждый глаз — то есть чуть больше 180 всего), а с другой — по 60 градусов центрального поля зрения, которые пересекаются с каждого глаза. Благодаря этому пересечению, изображения, получаемые одним и другим глазом, складываются в одно изображение в центре общего поля зрения. То же пересечение полей зрения обеспечивает нам стереоскопическое (или бинокулярное) зрение и способность воспринимать глубину. Бинокулярность зрения теряется при некоторых формах косоглазия — и при них же теряется нормальная возможность воспринимать глубину.

Поэтому механизм того, как формируется в нашем мозге изображение действительности, — это не только оптика и химические реакции, происходящие на сетчатке. Важнейшую роль в создании этой картинки играет наш мозг — причем не только зрительная кора, которая делает фигуры объемными, отделяет их от фона и раскрашивает в нужные цвета, но и остальные отделы, которые отвечают за жизненно важные функции.

В клинике 3Z работают со всеми видами нарушения зрения, возникающими из-за неправильной формы глаза (близорукость и дальнозоркость) или чрезмерной кривизны роговицы (астигматизм). До 15 июля коррекцию зрения в 3Z можно сделать в рассрочку без предварительного взноса и переплат. Акция действует на все виды лазерной коррекции зрения, а также на имплантацию факичных интраокулярных линз (ФИОЛ).

Елизавета Ивтушок

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.