Как определить параметры ядра кометы
Долгое время ученые не могли объяснить, как кометы появляются в Солнечной системе. Однако примерно с середины XX века считается, что большинство этих космических объектов прибывает из облака Оорта, преодолевая огромные расстояния — от 25 до 250 тысяч астрономических единиц от Солнца. В книге «Кометы. Странники Солнечной системы» (издательство «Бомбора») астроном Леонид Еленин рассказывает, кто за ними охотится и что нам сегодня известно о кометах. Книга вошла в длинный список премии «Просветитель» 2024 года. Предлагаем вам ознакомиться с фрагментом о том, из чего состоит кометное ядро и с какими трудностями сталкиваются ученые, пытаясь определить его размер и плотность.
Я рассказал о долгом тысячелетнем пути, который человечество прошло прежде, чем приблизилось к пониманию природы комет. Что же они такое на самом деле? Именно об этом мы более детально поговорим в этой главе. И начнем с самого загадочного и важного элемента — кометного ядра. О хвостах комет люди знают уже тысячи лет, в то время как об астероидах всего лишь чуть более двухсотПервый астероид — Церера (ныне карликовая планета), был открыт итальянским астрономом Джузеппе Пьяцци в Палермской астрономической обсерватории 1 января 1801 года.. Но комета — это ее ядро, а все остальное — кома и хвост — лишь следствие его активности. По иронии природы человечество увидело ядро кометы лишь недавно. Это произошло в 1986 году, когда флот космических кораблей изучал Великую комету Галлея. За последние десятилетия произошел огромный скачок в изучении этих тел, и я расскажу о том, что мы знаем о них сегодня. Итак, давайте погрузимся в глубь газово-пылевой оболочки, туда, где от посторонних глаз скрыт настоящий реликт Солнечной системы — кометное ядро.
Как я уже писал в предыдущей главе, общее понимание того, чем является крохотное, по сравнению с комой и хвостом, кометное ядро, появилось в начале 1950-х годов. Да, отдельные и в целом верные идеи о том, что собой представляет «сердце» кометы, возникали и ранее. В 1927 году французский астроном Фернан Бальде и его американский коллега Эрл СлайферЕго брат Весто Слайфер впервые выполнил измерения лучевых скоростей галактик и первым связал красное смещение со скоростью., изучая комету 7P/Pons-Winnecke, высказали предположение, что ее ядро — совсем небольшой, диаметром в две-три мили, монолитный объект. Напомню, что в то время активно продвигалась теория «песчаной горы» или «отмели», описывающей кометное ядро как облако или рой гравитационно связанных между собой мелких частиц, содержащих адсорбированныеАдсорбция — самопроизвольный процесс поглощения твердым телом либо жидкостью различных веществ из окружающей среды. газы, а та активность, что мы наблюдаем у комет, является не чем иным, как обратным процессом — десорбцией, то есть их высвобождением в окружающее пространство.
В военном 1943 году молодой советский астроном Борис Юльевич Левин высказал идею, что кометные ядра по физико-химической природе похожи на метеоритное вещество и отличаются лишь своими размерами и количеством сорбированных (поглощенных) газов. Следующий шаг вперед в 1948 году сделал советский астроном Сергей Константинович Всехсвятский, первым предположивший, что кометные ядра могут содержать лед, а наблюдаемая активность связана не с десорбцией поглощенных газов, а с их сублимацией (превращением твердого тела непосредственно в газ) при приближении к Солнцу. Он был близок к разгадке тайны, но, к сожалению, не стал развивать свою идею. Год спустя Левин в своей научно-популярной статье, опубликованной в журнале «Природа», также пишет о возможном присутствии льдов в составе кометных ядер, и снова это высказывание остается без должного научного развития.
И только Фред Лоуренс Уиппл объединил воедино летавшие в воздухе идеи. Добавив к ним свои революционные мысли, в 1950 году он выдвинул концепцию «грязного снежка», объяснявшую многие особенности наблюдаемого поведения комет. И хотя Уиппл обошел вопрос процентного соотношения метеоритного вещества и льдов, но все же он был уверен, что это каменистые тела с вкраплениями льдов, а не наоборот. Так что устоявшееся «название» модели не совсем верно, скорее это «камни, облепленные снегом». Да, его модель была достаточно проста: она не рассматривала подповерхностную структуру ядра, но главное, что она кардинально отличалась от «горы песка» или «ядра-роя». Все дальнейшие исследования лишь дополняли ее. Стоит отметить, что именно Уиппл первым предположил, что в Солнечной системе есть «дремлющие» (dormant) кометы — тела, которые полностью исчерпали свои запасы летучих веществ, по крайней мере на поверхности, и мы наблюдаем их как обычные астероиды. Первым кандидатом в такие объекты стал странный астероид на кометной орбите — (944) Идальго, обнаруженный в 1920 году немецким астрономом Вальтером Бааде. Сейчас он считается и первым из открытых кентавров, о которых мы уже говорили в первой главе.
В 1971 году бельгийский астроном Арман Дельсемм развил модель сублимации водяного льда и других летучих веществ, содержащихся в кометном ядре. На базе этой теории американский астроном британского происхождения Брайан МарсденБрайан Джеффри Марсден (англ. Brian Geoffrey Marsden; 1937–2010) — английский и американский астроном, первооткрыватель астероидов, создатель теории движения комет с учетом воздействия на них негравитационных сил. С 1978 по 2006 год руководил Центром малых планет. о котором я еще не раз упомяну на страницах этой книги, в 1973 году создал фундаментальную теорию негравитационных возмущений в движении комет, вызванных их активностью, по сути — реактивными силами. В 1986 году космические аппараты «Вега-1», «Вега-2» и «Giotto» («Джотто») получили первые в истории снимки ядра кометы, которые окончательно подтвердили правильность модели Уиппла.
Теперь мы знаем, что представляет собой кометное ядро, но как оно образовалось? На этот счет, как принято у ученых, есть несколько мнений (моделей). Первым, в 1985 году, свою теорию «пушистой совокупности» (fluffy-aggregate) опубликовал американский астроном Бертрам Донн, а спустя год он развил эту идею в совместной статье с британским коллегой Дэвидом Хьюзом. Ученые представили модель образования кометного ядра как совокупности небольших ледяных планетезималей, к объединению которых привели хаотичные низкоэнергетические столкновения (столкновения с малой относительной скоростью). Поэтому кометные ядра должны выглядеть как очень пористые тела неправильной формы. Напомню, что это предположение было высказано еще до появления первых снимков кометного ядра.
В этом же году другой американский астроном — Пол Вайсман — опубликовал модель «первобытной груды щебня» (primordial rubble pile), которая в целом подтверждала концепцию коллег, но имела и существенное отличие. Вайсман отметил, что гравитационное сжатие ядра кометы диаметром около 5 километров не сможет обеспечить повышения температуры внутри более чем на один градус, а значит, ледяные глыбы, составляющие ядро, не «сплавлены» воедино, но соприкасаются, составляя, хоть и хрупкое, связанное слабыми гравитационными силами, но все же единое целое. Слово «первобытный» применено здесь не случайно и не только для усиления литературного эффекта. Этим прилагательным Вайсман хотел подчеркнуть, что считает кометные ядра конгломератом первозданного вещества протопланетного диска, из которого были сформированы планеты и малые тела Солнечной системы. Он считал, что кометные ядра не могут формироваться из осколков ранее разрушившихся ледяных планетезималей. Теперь мы знаем, что это было ошибкой. В наши дни столкновительная эволюция считается одним из важнейших механизмов формирования различных тел Солнечной системы.
Уже после получения снимков ядра кометы Галлея венгерский астроном Тамас Гомбоси и его коллега Гарри Хупис предложили свою модель «ледяного клея» (icy-glue). По их мнению, ядра комет представляют собой крупные пористые объекты, схожие по своим параметрам с астероидами внешней области Главного пояса и скрепленные, можно сказать сцементированные, между собой льдом в единый конгломерат. Эта модель неплохо объясняла природу джетов вещества, бьющих из светлых областей между двух крупных «каменных» глыб. Она объясняла и некоторые особенности, впервые замеченные учеными на снимках с космических аппаратов. Но все же эта модель не получила широкой поддержки в научной среде. К примеру, высказывались мнения, что раз ядро кометы скрепляет лишь лед, то мы должны наблюдать распавшиеся фрагменты старых комет, которые исчерпали запасы связующего вещества, что должно было привести к неминуемому распаду некогда единого объекта на компактный рой «астероидов». В 1993 году ученые обнаружили разорванную приливными силами Юпитера комету Шумейкеров — Леви 9 (D/1993 F2). Анализ данных о ней, базирующийся, в том числе, на работах видного советского астронома Олега Васильевича Добровольского, показал, что строение ядра этой кометы ближе к двум первым моделям, а прочность ядра на растяжение меньше, чем у свежевыпавшего снега.
Исходя из представлений о процессе формирования комет, можно предположить, что это очень пористые тела с малой объемной плотностью. Оценка значения плотности занимала умы ученых несколько десятилетий. Проблема в том, что ядро кометы — это, как правило, компактный и маломассивный объект, который не оказывает существенного гравитационного воздействия на окружающие его тела, даже на пролетающий мимо космический аппарат. К тому же, для вычисления плотности помимо массы нужно знать объем, то есть размеры аппроксимирующего эллипсоида по двум его осям, а точные данные об этом можно получить, лишь наблюдая ядро in situ, то есть непосредственно на месте событий.
Неужели нет никаких методов дистанционного определения размеров кометного ядра? Есть, даже два. Первый — радиолокация. К сожалению, данный метод сильно ограничен в дальности. На сегодняшний день астрономам удалось зафиксировать уверенный отраженный радиосигнал лишь от двух кометных ядер в момент их максимального сближения с Землей. В 1983 году это было успешно проделано с ядром кометы C/1983 H1 (IRAS-Araki-Alcock), которая прошла всего в 4,5 миллиона километров от Земли, и в 1996 году ядро кометы Хякутакэ (C/1996 B2) удалось успешно пролоцировать в течение пары дней с рекордного расстояния в 15 миллионов километров!
Еще одним методом определения размеров ядер комет служит наблюдение покрытий ими звезд. Если ядро кометы закрывает собой звезду, то, наблюдая это явление в различных обсерваториях, можно получить оценку размеров проекции кометного ядра на небесную сферу. К сожалению, этот метод намного хуже применим к кометным ядрам, чем к астероидам, в отношении которых он демонстрирует хорошие результаты. Все дело, как вы, наверное, уже догадались, в плотной газово-пылевой оболочке, особенно внутренней коме, которая имеет заметную оптическую толщину, то есть, скорее всего, воспринимается как непрозрачная часть самого ядра, безусловно им не являясь. Поэтому нет ничего лучше, чем наблюдение ядра вблизи непосредственно с помощью камер космического аппарата.
Так что же можно сказать о плотности кометных ядер? Не буду перечислять десятки оценок их средней объемной плотности (не плотности отдельных твердых частиц, составляющих ядро, а общей плотности ядра с учетом подповерхностных пустот), опубликованных за последние 40 лет. Скажу лишь, что они колеблются от 0,1 до 1,2 грамма на кубический сантиметр (напомню, что средняя плотность пресной воды равна 0,998 г/см3). Анализ распада кометы D/1993 F2 (Shoemaker-Levy 9) дает более узкую оценку средней объемной плотности в 0,5–0,6 г/см3, что близко к значению, которое используют астрономы в современных научных статьях: обычно это 0,6 г/см3. Как видим, если поместить ядро кометы в исполинский бассейн, то оно будет плавать на поверхности воды.
Еще один трудноопределимый параметр ядра — его отражательная способность, альбедо. Это важный показатель: на его основе можно оценить физический размер ядра по его фотометрическим наблюдениям (измерению видимого блеска), по которым вычисляется абсолютная звездная величина кометного ядра. И вновь проблема в том, что для определения этого параметра дистанционно нужно измерять неактивное ядро — пока его даже слабая разреженная кома не станет вносить искажения в измерения. Как будет сказано дальше, кометы могут быть слабоактивны даже на достаточно больших гелиоцентрических расстояниях, а значит, подобное влияние нужно учитывать.
В целом можно утверждать, что все кометные ядра очень темные, то есть слабо отражают свет. Как же так, ведь мы знаем, что на их поверхности должны быть залежи льда? Да, но нужно иметь в виду, что этот лед погребен под толстым слоем пыли, а частично открытые участки занимают лишь малую долю площади. Самым «темным» кометным ядром на данный момент считается ядро кометы 9P/Borrelly — его геометрическое альбедо составляет всего 0,029, то есть его поверхность в среднем отражает лишь 2,9 процента падающего на него света — меньше, чем у самого темного асфальта, и в 10–20 раз меньше, чем у водяного льда. Среднее значение альбедо поверхности ядер по выборке из нескольких десятков хорошо изученных комет считается равным 0,04, то есть 4 процентам. В целом мы уже хорошо представляем себе, чем физически является кометное ядро. Пора переходить к вопросу о его химическом составе: из чего состоят его льды и что за летучие вещества заполняют его бесчисленные полости. И с этим, как вы понимаете, тоже возникли проблемы. Вроде бы все просто — получить спектр и расшифровать его. Впервые спектр кометы был получен еще в далеком 1864 году итальянским астрономом Джованни Баттиста Донати, о чем я уже рассказывал в предыдущей главе. Но этот спектр содержал лишь «подпись» самого Солнца, свет которого попросту отражался от атмосферы головы кометы, и три широкие эмиссионные линии, то есть линии излучения вещества самой комы. И это оказался самый распространенный элемент кометных атмосфер — молекула диуглерода C2. Позже эти линии назовут полосами Свана, по имени шотландского ученого Уильяма Свана, занимавшегося исследованиями спектра углерода.
Подробнее читайте:
Еленин, Леонид Владимирович. Кометы. Странники Солнечной системы / Леонид Еленин. — Москва : Эксмо, 2024. — 304 с.: ил. — (Подпишись на науку. Книги российских популяризаторов науки).