Американская компания Lockheed Martin объявила конкурс на разработку автопилота с искусственным интеллектом, который будет отвечать за управление гоночными мультикоптерами. Конкурс получил название AlphaPilot. В нем могут принять участие любые желающие команды программистов, которые в серии состязаний будут бороться за приз в размере двух миллионов долларов.
Нейросетевые технологии сегодня все чаще используются при разработке различной беспилотной техники. Считается, что под управлением искусственного интеллекта беспилотная техника сможет безаварийно перемещаться по различным маршрутам. Боевые системы смогут вести маневренный бой с большими перегрузками, недоступными для человека.
Разработка новой системы автопилота с искусственным интеллектом в рамках проекта AlphaPilot будет вестись на базе встраиваемой платформы NVIDIA Jetson. Получившаяся система автопилота должна будет полностью самостоятельно без предварительной подготовки провести квадрокоптер по гоночному треку.
Гоночные квадрокоптеры под управлением автопилота будут соревноваться в скорости прохождения трассы с пилотируемыми беспилотниками. Победителем будет объявлена команда программистов, чей автопилот сможет выиграть гонку у профессионального дрон-рейсера.
В апреле 2017 года Lockheed Martin совместно с Исследовательской лабораторией ВВС США провела демонстрационные испытания системы автономизации ударных беспилотников. В испытаниях участвовала модифицированная беспилотная версия многофункционального истребителя F-16 Fighting Falcon, на который было установлено новое программное обеспечение, повышающее автономность самолета.
Основной целью проекта автономизации ударных беспилотных летательных аппаратов является создание боевого беспилотника, который мог бы выступать в роли ведомого. При этом ведущим должен быть пилотируемый истребитель. Разработка новой системы, которую можно было бы быстро и легко установить как на существующие беспилотные аппараты, так и на новые, ведется с 2015 года.
По мнению военных, в роли ведомых такие аппараты могли бы брать на себя часть боевых функций пилотируемого самолета. Например, ведомые беспилотники могли бы наносить удары по целям, указанным летчиком. Кроме того, такие аппараты могли бы нести более мощные радиолокационные станции или сенсоры.
Василий Сычёв
При этом не потребуется демонтаж и разборка
Инженеры GE Aerospace Research разработали мягкого робота Sensiworm для обследования технического состояния авиационных двигателей. Робот способен ползать подобно гусенице по вертикальным поверхностям и даже потолку, передавая оператору видеоизображение в реальном времени. С помощью Sensiworm технические специалисты смогут оценивать текущее состояние авиамоторов без необходимости их демонтажа с самолета, сообщает New Atlas. При поддержке Angie — первого российского веб-сервера Современные турбовентиляторные двигатели требуют регулярного обслуживания. Они состоят из огромного количества деталей, тщательно изучить состояние которых без снятия двигателя с самолета даже с помощью эндоскпов (бороскопов) порой невозможно. При этом демонтаж мотора и его последующая разборка занимают много времени, в течение которого самолет простаивает на земле. Поэтому инженеры давно работают над альтернативными способами обследования авиадвигателей изнутри без их демонтажа. Одна из таких разработок принадлежит инженерам исследовательского отдела компании General Electric GE Aerospace Research, которые совместно с сотрудниками Университета Бингемтона разработали мягкого робота Sensiworm (Soft ElectroNics Skin-Innervated Robotic Worm) для обследования технического состояния авиационных двигателей изнутри. Вытянутый корпус Sensiworm состоит из мягкого полимерного материала, который способен растягиваться и сокращаться с помощью источника давления. Способ передвижения Sensiworm напоминает движения гусеницы пяденицы. Робот может передвигаться не только по горизонтальным и вертикальным поверхностям, но также и по потолку. Для этого он использует две присоски, расположенные в передней и задней части корпуса. Таким образом Sensiworm может добраться до труднодоступных мест внутри двигателя, включая лопатки компрессоров и турбин. https://www.youtube.com/watch?v=_Mks06p0KVo Внутри автономной версии Sensiworm, помимо собственных источников питания, давления и бортового компьютера, находится камера с источником света, а также другие сенсоры, необходимые сервисным специалистам. Робот может автоматически обнаруживать и обходить препятствия (технических деталей того, как это происходит, разработчики пока не сообщают). По словам создателей Sensiworm, робот должен выполнять роль дополнительных глаз и ушей, исследуя внутренности авиадвигателей на предмет неисправностей, коррозии и повреждения теплоизоляционного покрытия. Разработчики считают, что в будущем он сможет не только передавать изображение интересующих участков в реальном времени, выполняя роль продвинутого варианта бороскопа, но и сможет производить мелкий ремонт. Внутренней инспекции требуют не только такие сложные устройства как авиадвигатели, но даже трубопроводы. Китайские инженеры разработали миниатюрного робота для инспекции внутреннего состояния трубопроводов диаметром меньше сантиметра. Робот состоит из цилиндрических модулей, приводимых в движение актуаторами на основе диэлектрических эластомеров.