Две команды физиков независимо разогнали с помощью лазеров нанометровые «спиннеры» до скорости порядка одного миллиарда оборотов в секунду — самой высокой скорости вращения, полученной в лаборатории. Первая группа из Швейцарской высшей технической школы Цюриха (ETH Zurich) заставляла вращаться наночастицу кремнезема, а вторая группа, состоящая из китайских и американских исследователей, использовала в качестве «спиннера» наногантелю. Работа ученых поможет лучше понять такие тонкие эффекты, как вращение Казимира, связанное с квантовыми флуктуациями вакуума. Статьи опубликованы в Physical Review Letters [1, 2], кратко о них сообщает Physics, препринты работ выложены на сайте arXiv.org [1, 2].
Скорость вращения любого объекта ограничена пределом его прочности. Чем быстрее вращается объект, тем большую скорость развивают его частицы и тем большая сила нужна, чтобы заставлять их повернуть и удерживать тело в целости. Другими словами, при увеличении скорости растет центробежная сила, которая стремится «разорвать» тело. Впрочем, называть центробежную силу «силой» не совсем правильно, поскольку она возникает только в неинерциальной системе отсчета (подробнее о ее природе можно прочитать в этой заметке).
Заметнее всего действие этой «фиктивной силы» проявляется в точках, наиболее удаленных от центра вращения объекта: F = mω2r, где m — масса точки, r — ее расстояние до центра, а ω — угловая скорость. Из-за этого частота вращения макроскопических объектов редко превышает тысячу оборотов в секунду. Например, частота вала газогенератора двигателя PW207K вертолета «Ансат» может достигать 60000 оборотов в минуту (1000 оборотов в секунду), а турбина двигателя CFM56, который устанавливается на самолетах фирм Boeing и Airbus, вращается с частотой около 5200 оборотов в минуту (менее 90 оборотов в секунду).
Уменьшая размеры объекта, можно заставить его вращаться гораздо быстрее. Оказывается, что для достижения сверхвысоких скоростей удобнее всего использовать частицы размером порядка ста нанометров, подвешенные в воздухе с помощью лазерного излучения (так называемая оптическая ловушка). Направляя на связанную частицу свет с круговой поляризацией, можно передать ей угловой момент и увеличить ее угловую скорость (эффект Садовского). Таким образом можно избежать механического трения, которое поглощает энергию и мешает разгонять частицу, а также контролировать центр вращения с точностью, сравнимой с теоретическим пределом.
К сожалению, на высоких скоростях начинает сказываться трение наночастицы о воздух, которое также уносит энергию частицы. Бороться с этим трением можно только откачивая установку до сверхнизких давлений, создавая в ней вакуум. Из-за подобных технических сложностей ученым не удавалось достичь в лаборатории скоростей вращения, превышающих по порядку десяти мегагерц. В новых работах ученым удалось преодолеть это препятствие, подтвердить теоретические предсказания и достичь частоты вращения порядка одного гигагерца.
Первая группа исследователей под руководством Лукаса Новотного (Lukas Novotny), использовала в качестве «спиннера» частицу кремнезема (проще говоря, обычного стекла) приближенно сферической формы и диаметром около ста нанометров. Для уменьшения потерь физики откачали установку до давления порядка 10−8 атмосфер и увеличили длину волны лазера, который использовался для разгона частицы, до 1565 нанометров. Это позволило уменьшить скорость нагрева частицы — в предыдущих экспериментах такой нагрев заставлял частицу «выскакивать» из ловушки и мешал разогнать ее выше определенного предела.
В результате ученые обнаружили, что с уменьшением давления при фиксированной мощности лазера и увеличении мощности при фиксированном давлении угловая скорость вращения частицы линейно растет, причем экспериментальная зависимость хорошо согласуется с теорией. Максимальная частота, полученная в этом эксперименте, достигала 1,03 гигагерц, что отвечало скорость краев частицы порядка 300 метров в секунду, центробежному ускорению порядка 1012 метров на секунду в квадрате и напряжению порядка 0,2 гигапаскаль. Для сравнения, критическое напряжение, при котором частица кремнезема разрывается, составляет примерно 10 гигапаскаль.
Вторая группа, под руководством Тунцана Ли (Tongcang Li), заставляла вращаться наногантели — связанные друг с другом частицы кремнезема. Чтобы изготовить такие гантели, ученые «растворяли» наночастицы кремнезема в воде и получали коллоидную суспензию, а затем с помощью ультразвукового небулайзера заставляли воду формировать микрометровые капли, взвешенные в воздухе. В некоторых из капель находилось две сферические частицы кремнезема; после испарения воды частицы оставались связаны в наногантели, которые ученые использовали в дальнейших опытах. Отношение диаметра шаров к расстоянию между ними для всех полученных наногантелей было примерно равно двум.
Так же как и группа швейцарских ученых, группа под руководством Тунцана Ли помещала наногантели в оптическую ловушку, откачивала установку до давления порядка 10−7 атмосфер и светила на частицы лазером с круговой поляризацией и длиной волны около 1550 нанометров. Аналогично швейцарцам, физики получили, что скорость вращения линейно растет при уменьшении давления, а предельная частота вращения в этом случае составила примерно 1,1 гигагерц — при бо́льших скоростях гантель разрывалась под действием центробежной силы.
Тем не менее, конструкция установки, аналогичная опыту Кавендиша, в котором проволока крутильных весов заменена на лазерное излучение, позволяет провести на ней качественно другие эксперименты. Если заменить в ней свет с круговой поляризацией на линейно поляризованный свет, наногантели будут колебаться, а не крутиться, что позволит в будущем измерить вращательный эффект Казимира (Casimir torque) и исследовать природу квантовой гравитации.
Впрочем, ученые признаются, что изначально они не ставили перед собой практических целей. Например, соавтор первой работы, Рене Рейманн (René Reimann), говорит: «Если честно, это просто было очень круто — иметь механический объект с самой высокой скоростью вращения в мире прямо перед нами». Тем не менее, работа ученых может пригодиться при изучении межзвездной пыли и вакуумного трения, исследовании поведения материалов и взаимосвязи между вращательными и поступательными степенями свободы в экстремальных условиях.
В ноябре прошлого года американские исследователи-нанотехнологи изготовили с помощью фотолитографии самый маленький в мире фиджет-спиннер, размер которого составил примерно сто микрометров.
Дмитрий Трунин