Швейцарские ученые разработали технологию получения солнечного элемента, который одновременно включает в себя и кремниевую, и перовскитную части. Эффективность гибридной батареи составила 25,2 процента — это рекордный показатель для батарей такого типа. При этом стоимость технологии не сильно отличается от стоимости производства стандартных кремниевых элементов, пишут ученые в Nature Materials.
Наиболее распространенным полупроводниковым материалом, который может поглощать солнечный свет и преобразовывать его в электрическую энергию, остается кремний — именно из него сделано большинство современных солнечных батарей. Один из основных недостатков этого материала — фундаментальные ограничения в эффективности преобразования энергии: для однослойной солнечной батареи из кремния ее максимум не превышает 30 процентов. Значительно больших КПД удается добиться при использовании многослойных ячеек из других полупроводниковых материалов. Например, эффективность солнечных батарей из арсенидов галлия и индия приближается к 50 процентам, однако их производство очень дорого и в промышленных масштабах пока что не может быть реализовано.
В качестве замены кремнию именно для массового производства солнечных батарей чаще других материалов предлагают использовать соедиенения со структурой перовскита. Обычно перовскитные солнечные ячейки включают в себе органо-неорганические материалы на основе трииодида метиламмония свинца (CH3NH3PbI3), и уже сейчас их эффективность превышает 20 процентов. Дополнительно повысить КПД батарей на основе перовскитных материалов тоже можно за счет использования многослойных полупроводниковых структур, однако, как и в случае с арсенидными элементами, производство эффективных перовскитных ячеек из большого числа слоев нанометровой толщины пока остается слишком дорогим.
Для уменьшения стоимости производства многослойных перовскитных солнечных элементов и одновременного увеличения их эффективности швейцарские ученые под руководством Кентена Жангро (Quentin Jeangros) из Федеральной политехнической школы Лозанны предложили наносить тонкий слой перовскитного полупроводника на поверхность более эффективных кремниевых ячеек. Использование подобных гибридных элементов позволяет увеличить эффективность поглощения солнечного света: перовскит лучше поглощает в синей и зеленой частях спектра, а кремний — в красной и инфракрасной.
Подобные гибридные ячейки уже пытались получать, однако все они использовали плоские полированные кремниевые поверхности, которые недостаточно эффективно поглощают свет. Более эффективные кристаллы кремния, которые используются сейчас в солнечных элементах, имеют на своей поверхности текстуру, состоящую из массива пирамидок микронного размера, что сильно снижает долю отраженного света. Однако такая текстура затрудняет осаждение на нее слоев других составов с помощью традиционных методов (таких как спин-коутинг). Поэтому в данном случае ученые предложили использовать для получения перовскитного и промежуточных слоев целый комплекс методов осаждения пленок из газовой фазы после совместного испарения компонентов, в том числе термическое напыление, атомно-слоевое осаждение и магнетронное распыление.
В результате правильного подбора составов всех слоев, необходимых для создания p-i-n-перехода, химикам удалось получить солнечный элемент, в котором поверхность кремния покрывала многослойная структура, включающая основной слой перовскита толщиной около 400 нанометров. Эффективность преобразования энергии солнечного элемента составила 25,2 процента — это рекордный показатель для гибридных батарей такого типа. А за счет использования именно пирамидальной кремниевой поверхности удалось добиться и высокого значения плотности тока в ячейке: она достигала 19,5 миллиампер на квадратный сантиметр.
По словам авторов работы, основное достоинство предложенного метода — это его полная совместимость с современной технологией производства кремниевых батарей. Поэтому добавление к процессу одной дополнительной стадии не сильно скажется на стоимости производства, зато значительно увеличит эффективность получаемых элементов. Ученые отмечают, что в дальнейшем с помощью такого подхода эффективность гибридных солнечных ячеек может быть увеличена и до 30 процентов.
Одна из главных недостатков современных перовскитных батарей — их химическая и физическая деградация, которая приводит к быстрому снижению эффективности. Чтобы решить эту проблему, исследователи предлагают различные подходы. Например, недавно для этого химики разработали перовскитную солнечную батарею с дополнительным слоем фторированного графена, который не дал КПД элемента упасть за месяц больше, чем на 18 процентов. Другой способ замедления деградации — снятие внутренних напряжений в кристалле, к которому может привести облучение батареи светом энергией больше ширины запрещенной зоны.
Александр Дубов