Американская компания Lockheed Martin в ближайшее время приступит к испытаниям безотводного воздухозаборника, который станет частью конструкции перспективного «тихого» сверхзвукового пассажирского самолета. Как пишет Aviation Week, целью испытаний станет проверка эффективности работы воздухозаборника и эффективности отсечки пограничного воздушного слоя на его входе.
Во время полета отдельных частях поверхности корпуса летательного аппарата образуется пограничный воздушный слой. Пограничным воздушным слоем называют тонкий слой на поверхности летательного аппарата, характеризующийся сильным градиентом скорости от нуля до скорости потока вне пограничного слоя.
При попадании медленного пограничного слоя в воздухозаборник существенно падает эффективность вентилятора реактивного двигателя. Кроме того, из-за разности скоростей воздушных потоков, вентилятор испытывает разные нагрузки на разных своих участках. Наконец, пограничный слой из-за низкой своей скорости может снижать объем поступающего в двигатель воздуха.
Для того, чтобы избежать попадания пограничного слоя в воздухозаборник и двигатель, устройство для забора воздуха размещают либо в носовой части самолета (как это делалось на советских боевых самолетах, например, МиГ-15), либо на некотором расстоянии от корпуса летательного аппарата. Кроме того, на сверхзвуковых самолетах воздухозаборник имеет пластинку со стороны корпуса — отсекатель пограничного слоя.
Современные сверхзвуковые самолеты используют так называемый безотводный воздухозаборник. Он не имеет щелей между собой и корпусом самолета. В конструкцию такого воздухозаборника входит рампа и специальные кромки на входе. В таком воздухозаборнике при торможении воздушного потока возникает веер волн сжатия, который препятствует прохождению пограничного слоя.
Технология безотводного воздухозаборника была впервые представлена компанией Lockheed Martin в конце 1990-х годов и сегодня используется на модернизированных истребителях F-35 Lightning II. Разработчики полагают, что безотводный воздухозаборник будет эффективен и на «тихом» сверхзвуковом пассажирском самолете, разрабатываемом по проекту QueSST.
В перспективном самолете двигатель будет установлен в хвостовой части с воздухозаборником, расположенным над фюзеляжем. Такое расположение, по оценке разработчиков, позволит фюзеляжу отражать ударные волны, образующиеся при сверхзвуковом полете на кромках воздухозаборника, вверх, а не к поверхности.
Испытания модели сверхзвукового самолета с воздухозаборником будут проводиться в аэродинамической трубе на авиабазе «Форт-Уэрт» в Техасе. Испытываемая модель получит воздухозаборник с сечением несколько большим, чем у аналогичных устройств, ранее установленных на другие продувочные модели.
В декабре прошлого года американская компания Gulfstream Aerospace получила патент на новый сверхзвуковой воздухозаборник, который наравне с другими техническими решениями позволит снизить уровень шума самолета на сверхзвуковой скорости полета. Конструкция нового воздухозаборника позволит снизить и его аэродинамическое сопротивление.
Новое устройство забора воздуха получит кромки такой формы, которая «сглаживания» ударных волн. Такие волны будут отличаться относительно плавным перепадом давления. Конструкция предусматривает создание увеличенного компрессионного клина на небольшом углублении в воздухозаборник, а также уменьшение угла атаки губы — наплыва, расположенного на противоположном фюзеляжу конце отверстия.
Такая конструкция позволит перенести зону предварительного сжатия поступающего воздуха внутрь воздухозаборника (у современных обычных сверхзвуковых воздухозаборников предварительное сжатие происходит снаружи на входе). При входе воздушный поток будет наталкиваться на клин, отражаться к губе и резко тормозиться с образованием нескольких ударных волн.
Предполагается, что ударные волны в воздушном потоке в воздухозаборнике, называемые также веером сжатия, позволят эффективно сжимать и замедлять воздушный поток до скорости, на которой он может быть нормально втянут компрессором турбореактивного двигателя. Перенесение зоны предварительного сжатия внутрь воздухозаборника позволит снизить его аэродинамическое сопротивление.
Василий Сычёв