9:8 в пользу марсиан

Почему так трудно совершить успешную посадку на Красной планете

Спускаемый зонд «Скиапарелли» был потерян 19 октября 2016 года в результате программной ошибки системы управления радара-высотомера. Зонд должен был научить Европейское космической агентство садиться на Марс… но не научил. И эта авария стала далеко не первой в попытках землян достичь поверхности Красной планеты.

Сейчас на Марсе действуют два космических аппарата: марсоходы «Оппортьюнити» и «Кьюриосити». В предыдущие годы успешно потрудились еще два марсохода и четыре посадочные станции. Восемь аппаратов сели неудачно, разбившись о поверхность Красной планеты, или частично неудачно, проработав около минуты. Одна посадочная станция пролетела мимо Марса. То есть, счет между землянами и «ПВО марсиан» почти равный, но все же земляне пока проигрывают. Все полностью успешные посадочные миссии на Марсе оказались американскими. С 1970-х годов инженерам NASA везло — почти все посадки на Красную планету удавались им с первой попытки.

В 1971 году Марса достигло первое изделие человеческих рук, советский марсоход «Марс-2». Однако скорость посадки была такой, что изделие разбилось о поверхность планеты и уже не могло принести никакой пользы своим создателям, кроме поднятия самооценки. Брат-близнец «Марс-3» оказался более успешен — он благополучно спустился, но вышел из строя примерно через минуту. Пара этих аппаратов должна была отработать технологию посадки на Марс, изучить свойства грунта: плотность, структуру, химический состав. Это исследование рассматривалось как предварение более сложных программ: отправки мощного марсохода, а затем и пилотируемой высадки.

Частично с задачей удалось справиться: «Марс-3» показал, что садиться можно и что Марс столь же твердый, как и Луна. Аппарат заложил практически классическую схему спуска, которая во многом повторялась вплоть до «Кьюриосити», хотя в деталях были и отличия.

Как и большинство посадочных марсианских модулей, «Марс-3» входил в атмосферу планеты без предварительного торможения, на перелетной скорости 5,8 километров в секунду. Первый удар атмосферы принимал на себя тормозной конус, который NASA называет Heat shield, «тепловой щит». Название неслучайно, поскольку даже разреженная атмосфера Марса на такой скорости нагревает его до температуры свыше 1500 градусов Цельсия. Вопреки распространенному убеждению, трение атмосферы не имеет к этому процессу никакого отношения. Нагрев происходит из-за ударной волны, которую формирует перед собой щит, — сильно сжатый газ нагревается и передает температуру поверхности щита. Материал поверхности щита начинает испаряться и, тем самым, охлаждать более глубокие слои.

Космический аппарат ненадолго окутывает облако плазмы. Через нее не проходят радиоволны, поэтому на самом жарком этапе спуска поддерживать связь с аппаратом невозможно. Но из-за расстояния между нашими планетами и задержки времени поступления сигнала в 7–10 минут, управлять посадкой с Земли во время сближения аппарата с Марсом все равно не получилось бы.

Тормозные конусы имелись у всех аппаратов, пытавшихся сесть на Марс. Но у всех, кроме советских «Марсов», щиты составляли часть полной теплозащитной капсулы, в которой прятались марсоход или модуль. На наших же щит и «скорлупа» крепились отдельно.

Когда гиперзвуковая скорость падает до сверхзвуковой, щит перестает быть эффективным. Сразу от него не избавляются, но начинается этап парашютного торможения. Сначала выпускается тонкий вытяжной, а за ним уже и основной парашют. Атмосферный поток еще высок — скорость составляет около 1500 километров в час, поэтому парашют называют сверхзвуковым. Чтобы поток не порвал резко раскрывшийся купол, используют технологию разрифовки: стропы заплетают таким образом, чтобы раскрытие было постепенным.

Вот два видео на английском языке (первое, второе), на которых показаны испытания продвинутой парашютной посадочной системы LDSD.

Чем шире раскрывается парашют, тем больше падает скорость, но атмосфера Марса настолько разреженная, что ее плотности не хватает для обеспечения мягкой посадки. Парашют позволяет сбрасывать скорость примерно до 300 километров в час, и требуется еще какое-то решение, чтобы доставить в сохранности полезную нагрузку на поверхность. Тут уже открывается больше простора для творчества инженеров и конструкторов.

Советские «Марсы» имели довольно малую массу для посадочных станций, поэтому обходились небольшими тормозными пороховыми двигателями. Причем у «Марса-2» и «Марса-3» двигателей было два: один уводил парашют в сторону, а второй «подвешивал» капсулу на цепях над поверхностью. Кстати именно благодаря этой цепи нам и удалось подтвердить обнаружение «Марса-3».

Последние метры «Марсы» пролетали в свободном падении, и удар на себя принимала толстая пенопластовая капсула. Из-за смещенного центра масс, по принципу неваляшки, «яйцо» стабилизировалось, и верхняя часть кожуха отстреливалась в сторону.

У «Марса-6» в 1973 году был один твердотопливный двигатель мягкой посадки, который сразу и гасил скорость, и отводил парашют. Точнее, должен был это делать. Что с ним произошло на самом деле, мы не знаем — передача данных с него прервалась примерно на этапе отделения парашюта, и сам аппарат на поверхности Марса пока не обнаружен. Существует гипотеза, что, как и в случае со «Скиапарелли», к аварии привела неверная оценка расстояния до поверхности.

Передача данных в полете, реализованный на «Марсе-6», это тоже результат опыта «Марса-3». «Третий» молчал, как и задумывалось, но специалисты на Земле поняли, что лучше бы он вещал на протяжении всей посадки. И хотя «Марс-6» отключился, не добравшись до поверхности, поработать он все же успел — провел первый непосредственный анализ атмосферы Марса и передал результаты на Землю. Его напарник «Марс-7» промахнулся мимо планеты, и его сигналы какое-то время регистрировались орбитальной станцией.

Пара аппаратов под маркировкой «Викинг» от NASA в 1976 году использовала более сложную систему — их уже оснастили жидкостными ракетными двигателями мягкой посадки. Жидкостный двигатель позволяет автоматике контролировать импульс, добиваясь плавности спуска и меньшей скорости достижения поверхности. При этом весь процесс протекал легче, поскольку скорость входа аппаратов в атмосферу составляла всего 3 километра в секунду. Сама посадка проходила не сразу. Межпланетные аппараты сначала выходили на околомарсианскую орбиту, выбирали подходящее место, и только потом посадочные модули спускались в атмосферу. Благодаря такой схеме на поверхность Красной планеты удалось доставить массивные аппараты, которые проработали несколько лет и провели массу экспериментов, в том числе по поиску воды и жизни.

Следующая посадка произошла целых двадцать лет спустя, в 1997 году. Спускаемый аппарат «Марс Пэтфайндер» должен был протестировать несколько технологий, в том числе способ торможения при помощи «воздушных мешков». Первая часть спуска проходила по привычной для NASA схеме, в капсуле. А уже из капсулы на привязи вытягивался спускаемый аппарат. В нескольких десятках метров над поверхностью срабатывали твердотопливные тормозные двигатели. Вокруг аппарата надувались баллоны из прочной ткани, из которой делают скафандры.

Модуль в «пузырях» ударялся о поверхность и сотни метров скакал, подобно мячу. В конце концов баллоны сдувались, и «Марс Пэтфайндер» раскладывался по хитрой схеме, обеспечивающей вертикализацию аппарата, на какой бы боку ни оказался аппарат в конце движения.

Впервые эту технологию применили еще в СССР для посадки «Луны-9», а позже она пригодилась для посадки марсоходов «Спирит» и «Оппортьюнити».

Первый европейский посадочный зонд «Бигл-2» в 2003 году садился похожим образом, только он даже умудрился обойтись без порохового тормозного двигателя. Спускался в капсуле и на парашюте, а потом сразу скакал, как мячик. «Бигл-2» сел практически удачно, даже сумел немного проработать на поверхности, подобно «Марсу-3». Только на Земле узнали об этом спустя десять лет после посадки.

Для нормальной работы «Бигл-2» надо было развернуть 4 лепестка с солнечными батареями и одну панель с приборами. Аппарат успел раскрыть только две солнечные батареи и остановился навсегда по неизвестной причине. Скорее всего, его аккумулятор сел, не успев зарядиться от Солнца, но это только предположение. «Бигл-2» не передал данные о себе, поэтому, с точки зрения ESA, он ушел в атмосферу и навсегда замолчал.

Нашли «Бигл-2» только в 2013 году, по снимкам спутника MRO.

В 1999 году NASA потеряло свою единственную посадочную миссию на Марсе — Mars Polar Lander. К его модулю прилагались два отделяемых импактных зонда Deep space 2. Предполагалось, что они будут садиться и работать самостоятельно, и хотя потеряли все вместе, можно считать эту неудачу сразу за три. Картина выглядела так же: ушли в атмосферу, и тишина. Южный полюс Марса оказался недостижим, даже следов миссии не нашли.

В 2009 году попытку покорения полюса, на этот раз Северного, повторили. Конструкция «Феникса» во многом повторяла «Полар Ландер», только с учетом прежних ошибок. Это была спускаемая платформа, похожая на «Викинг», и спускалась она так же, только без торможения на орбите. Полет завершился удачно. Северное приполярье было изучено, и найдена марсианская вода.

В 2012 году марсоход «Кьюриосити», которая оставляла ракетные двигатели высоко наверху, и в вместе с ними поднимала мастерство посадки до фантастического уровня, — SkyCrane.

По сути технология и название SkyCrane заимствованы у вертолетчиков. Именно там принцип «подлететь, зависнуть и погрузить» применяется давно и успешно. Только винт на Марсе бесполезен, поэтому пришлось полагаться на ракетные двигатели. Сейчас взлетающей, зависающей и мягко садящейся ракетой никого не удивишь, а в середине 2000-х это было весьма рискованное решение. Думаю, инженеры JPL потратили немало нервных клеток и скотча, чтобы убедить всех чиновников NASA в успехе своего плана.

Вторая европейская попытка, «Скиапарелли», опирался, кажется, на весь предыдущий опыт посадок на Марс, и свой, и чужой. В целом, посадочная схема повторяла схему «Феникса» или «Викингов», только вместо ног удар приходился на широкий поддон из алюминиевых сот.

Памятуя о неудаче «Бигл-2», инженеры ESA разработали модуль «из целого куска», без каких-либо подвижных механизмов, антенн или панелей. От солнечных батарей вообще решено было отказаться.

Странно, что при этом решили обойтись без воздушных мешков, хотя они практически успешно посадили «Бигл-2». Видимо, когда в 2013 году нашли пропавший зонд, разработка «Скиапарелли» дошла уже до того уровня, когда что-либо переделывать было поздно. Тем более, как показывают предварительные сообщения, сбой в посадке «Скиапарелли» случился на программном уровне, а не в «железе». Хотя точная причина зависания программы, погубившей зонд, пока еще не известна.

В целом, опыт полетов и посадок на Марс говорит о том, что это дело сложное, но возможное. И опыт тут является определяющим фактором — частота попыток повышает шансы на успех, и даже наземной отработки, с испытаниями всех возможных сценариев, никогда не бывает мало.

В будущем, вероятно, полеты на Марс дополнятся новыми приемами и технологиями. И в России, и в США не первый год испытываются надувные тормозные щиты. Космопромышленник Илон Маск собирается сажать на поверхность Марса корабль «Рэд дрэгон» массой в несколько тонн и, возможно, попытается обойтись при этом без парашютов (хотя вряд ли). В своих планах на будущее он анонсировал аэродинамическую посадку по схеме Space Shuttle. Сотрудники РКК «Энергия» тоже рассматривали такую схему еще в 1980-х — 1990-х годах и сочли ее вполне перспективной.

Из более реальных проектов в ближайшие годы стоит ожидать посадку марсохода «Пастер» в рамках российско-европейского проекта «ЭкзоМарс» — там будет применена платформа. Также нас ждет посадка американского MSL 2020 — SkyCrane. И, возможно, посадка китайского марсохода — как именно ее будут осуществлять, пока неизвестно, но скорее всего либо на платформе, либо по схеме «Спирит»/«Оппортьюнити».

Виталий Егоров