Эффект просушки: что происходит с радиоактивной лавой под реактором в Чернобыле

Четвертый энергоблок Чернобыльской АЭС, взорвавшийся больше 35 лет назад, сегодня укрыт уже двумя саркофагами: объектом «Укрытие», который строили еще первые ликвидаторы, и Новым безопасным конфайнментом (НБК), достроенным три года назад. Что происходит с остатками ядерного топлива в руинах реактора мы можем судить только по данным с датчиков радиации. В начале мая журнал Science опубликовал заметку о том, что в четвертом реакторном зале ЧАЭС вновь активизировались реакции распада. Через неделю Институт проблем безопасности атомных электростанций НАН Украины подтвердил, что в одном из подреакторных помещений четвертого реактора ЧАЭС «наблюдается рост плотности потока нейтронов», но тот «не превышает установленных пределов безопасности». Что происходит?

Science приводит слова сотрудников украинского Института проблем безопасности АЭС, Анатолия Дорошенко и Максима Савельева, о том, что поток нейтронов в остатках реактора медленно растет и нельзя исключить «риск инцидентов». Эти их слова отчасти повторяют выводы публикации в журнале «Вопросы атомной науки и техники» 2020 года, один из авторов которой как раз Дорошенко.

Действительно, несколько измерительных приборов системы контроля ядерной безопасности, установленной в объекте «Укрытие» (так официально называется саркофаг) показывают, что с 2016 по 2019 год плотность нейтронного потока увеличилась — в самом значительном случае на 60 процентов.

Откуда взялись нейтроны в давно «остывшем» месте катастрофы и почему они так важны?

Нейтроны вызывают деление ядер урана-235 или плутония-239 (которые поэтому называются делящимися материалами), при этом распад ядер сопровождается выходом новых нейтронов и в случае правильной геометрии материалов выстраивается самоподдерживающаяся цепочка реакций. Это можно увидеть в ядерном взрыве или работе атомного реактора, и самопроизвольная авария с образованием цепной реакции весьма опасна.

В ходе развития аварии на 4 блоке Чернобыльской АЭС чуть меньше половины загруженного в реактор топлива (80-90 из 200 тонн) осталась в здании в виде лаваподобных топливосодержащих материалов (ЛТСМ, подробнее об этом читайте в материале «Китайский синдром Чернобыля»). Уран, плутоний, америций и нептуний в этой застывшей лаве продолжают распадаться, порождая в некоторых вариантах распада нейтроны.

В конце 90-х общее количество нейтронов в «Укрытии» оценивалось величиной примерно 109 штук в секунду, что примерно в триллион раз меньше, чем поток нейтронов в работающем гигаваттном реакторе. За счет распада радиоактивных веществ мы должны были бы наблюдать постепенное снижение нейтронного потока, однако измерения кое-где показывают, что происходит не совсем это.

Отмеченный рост наблюдается в детекторах, установленных в скважинах, пробуренных в завалах и бетонных наплывах вокруг помещения 305/2, которое до аварии находилось прямо под реактором.

После аварии это помещение оказалось недоступным. И радиационные (те, что связаны с опасностью облучения), и ядерные (те, что связаны с риском возникновения самоподдерживающийся цепной реакции) измерения по нему косвенные. Дорошенко и соавторы в своей статье акцентируют внимание на том, что детекторы, расположенные возле помещения 305/2, где осталось самое большое скопление топливных масс, слишком сильно экранированы от него бетоном и завалами. В итоге получается, что нейтронный «шум» от других ЛТСМ забивает самый важный источник, поэтому точность данных по росту не очень велика в плане привязки замеченного роста потока к конкретному скоплению материалов.

Что там происходит

Атомный реактор, прежде всего, представляет из себя устройство для размножения нейтронов, с помощью которых идет извлечение ядерной энергии деления. Размножение достигается организацией такой геометрии из делящегося материала и замедлителя, при котором количество нейтронов возрастает после каждого акта деления, образуя самоподдерживающуюся цепную реакцию. Если же часть из нейтронов из нового поколения поглощать или давать им утекать из активной зоны таким образом, что количество их будет постоянным, то и мощность будет поддерживаться на одном и том же уровне.

Организовать такое непросто, и для ЛТСМ в «Укрытии» расчеты показывают, что для запуска ускоряющейся цепной реакции необходимо было бы уменьшить поглощение нейтронов «нейтральными» материалами и их утечку за пределы застывшего расплава как минимум в 2,5 раза. Самостоятельно такие изменения в самой керамике происходить не могут, но в ней есть поры и трещины, так что кое-что меняться может.

Основную роль в изменениях тут играет вода, которой в руинах четвертого энергоблока еще со времен аварии скопилось немало. После сооружения «Укрытия» оказалось, что дождевая и талая вода продолжает поступать внутрь, но к началу 1990 года установился некоторый баланс водного режима. Изменения нейтронной активности в помещениях под саркофагом, как пишут ученые в той же самой статье, были сезонными: сухие периоды сопровождались ростом плотности потока нейтронов, влажные наоборот.

Эта ситуация изменилась, когда поверх «Укрытия» возвели в середине 2010-х Новый безопасный конфайнмент — поступление воды в остатки энергоблока резко сократилось.

Из вышеупомянутой публикации по нейтронной физике ЛТСМ также следует, что существует точка «оптимального увлажнения», при которой нарастание количества нейтронов в каждом поколении достигает максимума. Соответственно, при высыхании залитых водой ЛТСМ нейтронный поток будет сначала увеличиваться и только после прохождения «оптимального увлажнения» начнет сокращаться — это, возможно, мы и видим сейчас.

Это происходит потому, что вода является одновременно сильным замедлителем и сильным поглотителем нейтронов. Замедление нейтронов — это снижение их энергии от миллионов электронвольт при рождении в ядерной реакции до сотых долей электронвольта — средней тепловой энергии атомов при комнатной температуре. Оно важно, потому что ядро урана-235 или плутония-239 примерно в 1000 раз охотнее поглотит замедленный нейтрон, чем быстрый, только появившийся в реакции. Поэтому добавляя воду к урану, мы увеличиваем вероятность деления и как бы виртуально многократно увеличиваем концентрацию урана. Однако когда воды становится достаточно много, все нейтроны успевают в ней замедлиться, и дальнейшее ее добавление приводит только к росту поглощения ценных нейтронов.

Но что может быть, если расчеты и модели неверны, и в реальности где-то сложатся условия для возникновения самопроизвольной цепной реакции? За историю работы человечества с делящимися материалами такие аварии возникали неоднократно (например, «заряд-демон» и авария на ядерном объекте Токаймура), поэтому можно довольно уверенно предсказать, что произойдет.


Как выглядит самый страшный сценарий

Что будет, если все же ускоряющаяся цепная реакция запустится где-то в объеме топливосодержащей лавы?

В какой-то момент нейтронный поток начнет экспоненциально расти, и за несколько миллисекунд мощность цепной реакции достигнет киловатта или мегаватта — в общем, достаточного уровня, чтобы быстро прогреть топливный материал и окружающую среду. Сработают отрицательные физические связи: ядерный допплер-эффект в уране и выкипание воды, соотношение генерации новых нейтронов в делении урана и их поглощения станет меньше единицы — и реакция остановится. Весь этот цикл займет не больше секунды, но будет заметен только приборам наблюдения по резкому всплеску нейтронного и гамма-излучения.

Затем «очнувшийся» материал остынет и может вновь заполниться водой. Соответственно, цикл с ростом мощности реакции и прогревом может повториться — и так будет происходить, пока содержание воды в этой области станет слишком маленьким для эффективного замедления нейтронов.

Если это и происходило в 2016-2019 году, то в процессе выпаривания воды из ЛТСМ в объеме Нового Безопасного Конфаймента должна была вырасти концентрация радиоактивных аэрозолей, которые наверняка задержала система фильтрации НБК и заметили бы датчики системы контроля ядерной и радиационной безопасности, но никаких прямых данных у нас об этом нет.

При этом вышеописанный сценарий — это цепь из крайне смелых допущений. А 

опровергает и вариант с развитием цепной реакции в ЛТСМ. Резюмируя, можно сказать, что за 35 прошедших с аварии лет, исследователи, видимо, достаточно хорошо знают об угрозах в останках четвертого энергоблока и барьерах на пути их распространения. Рост нейтронного потока был заранее предсказан расчетно и не является показателем роста опасности, а скорее подтверждает правильность заложенных моделей.

Валентин Гибалов