Учебное пособие профессора Оксфордского университета Александра Львовского «Отличная квантовая механика» (издательство Альпина нон-фикшн), переведенное на русский язык Натальей Лисовой, предлагает читателю самостоятельно разработать аппарат квантовой физики, последовательно решая предложенные задачи. В дополнение к традиционному материалу, охватываемому курсом квантовой механики, книга содержит глубинное обсуждение гильбертова пространства, квантового измерения, запутанности и декогеренции. Формальные концепции квантовой физики в книге проиллюстрированы примерами из современных экспериментальных исследований, таких как квантовые компьютеры, коммуникации, телепортация и нелокальность. N + 1 предлагает своим читателям ознакомиться с отрывком, в котором рассказывается о предмете изучения квантовой механики и парадоксе гильбертова пространства.
А дальше — стоп.
А дальше, извини, стена.
Пожалуй, первое, что нужно понять о квантовой механике, — это то, что к механике она имеет такое же отношение, как, скажем, к электродинамике, оптике, физике конденсированного состояния или высоких энергий. Квантовая механика, по существу, не описывает какой-то конкретный класс физических явлений; скорее, она обеспечивает универсальную теоретическую основу, которую можно использовать во всех областях физики, — так операционная система компьютера обеспечивает базу, на которой могут исполняться другие приложения. Употребление термина «квантовая механика» сложилось исторически, поскольку впервые квантовую основу удалось успешно применить при исследовании механического движения электронов в атоме. Более удачными терминами были бы «квантовая физика» или «квантовая теория».
Так что предмет квантовой механики (квантовой физики) глобален: она охватывает все физические явления во Вселенной. Однако применять квантовый подход имеет смысл только в случае очень маленьких (микроскопических) физических систем. Поведение более крупных систем очень хорошо аппроксимируется законами классической физики, намного более простыми и интуитивно понятными, по крайней мере для существ, эволюция которых проходила именно на этом масштабе величин.
Проиллюстрируем это примером. Вы, вероятно, слышали о принципе неопределенности Гейзенберга: ΔpΔx≥ħ/2. То есть координату и импульс частицы невозможно измерить точно и одновременно: произведение неопределенностей составляет по крайней мере ħ/2≈5×10-35 кг∙м2/с. Чтобы макроскопический объект с массой порядка килограмма достиг предела неопределенности, потребовалось бы измерить и координату объекта с точностью порядка ~ 10-17 м и скорость с точностью ~ 10-17м/с. Это, разумеется, нереально, так что для всех практических целей мы можем просто забыть о принципе неопределенности и рассматривать координату и импульс как точные величины. Но для электрона массой ~ 10-30 кг произведение неопределенностей координаты и скорости составит около 5 × 10-5 м2/с, что вполне укладывается в экспериментально доступную точность измерений и должно приниматься во внимание.
Таким образом, предсказания квантовой теории отличаются от классических только для относительно простых, микроскопических объектов. Это объясняет, почему квантовая механика была открыта лишь в начале XX в. До того времени мы (сами представляющие собой макроскопические тела) имели дело исключительно с макроскопическими предметами. Но стоило нам изобрести инструменты, позволяющие достаточно глубоко проникать в микроскопический мир, как сразу же проявились квантовые явления.
Это пример принципа соответствия — философской максимы, согласно которой любая новая, более современная теория должна воспроизводить результаты более старых, устоявшихся теорий в тех областях, где эти теории были проверены. Вот еще один пример для иллюстрации этого принципа. Пока мы имели дело только с объектами, движущимися намного медленнее света, для описания окружающего нас мира достаточно было ньютоновой механики. Но стоило нам получить возможность наблюдать тела, которые движутся быстро (например, Земля вокруг Солнца в эксперименте Майкельсона — Морли), мы начали замечать несоответствия и вынуждены были разработать теорию относительности. Эта теория заметно отличается от ньютоновой механики — но тем не менее согласуется с ней в предельном случае низких скоростей. Было бы неразумно использовать специальную теорию относительности для описания, например, трансмиссии трактора, потому что классическое приближение в данном случае и вполне достаточное, и многократно более простое в применении. Аналогичным образом использование квантовой физики для описания макроскопических явлений в большинстве случаев было бы переусложненным и ненужным.
В классической физике мы имеем дело с величинами: скоростью полета камня 10 м/с, силой протекающего по электрическому контуру тока 0,2 А и т. д. Даже если мы не знаем точного значения какой-то физической величины, мы можем работать над улучшением нашей теории и эксперимента, чтобы предсказать и измерить эту величину со все более высокой точностью. Иными словами, классический мир бесконечно познаваем. В квантовой физике ситуация иная: некоторые знания (например, одновременные значения координаты и импульса) могут быть «священными»: их в принципе невозможно получить. И эту ситуацию уже нельзя описывать в терминах одних только величин. Вместо этого мы должны использовать концепцию квантового состояния физической системы. Как мы увидим, эта концепция содержит в себе границу между знанием, которое можно получить, и знанием, которое получить невозможно. Мы можем узнать точно, в каком состоянии находится система, но каждое состояние связано с фундаментальными ограничениями на точность, с которой физические величины могут быть определены.
Поскольку квантовая механика играет уже упомянутую роль общей основы, мы изучаем ее с известной степенью математической строгости. Я буду вводить определения и аксиомы, потом описывать явления, которые из них проистекают, а затем иллюстрировать эти явления примерами из разных областей физики, преимущественно из оптики.
Основной математический инструмент квантовой механики — линейная алгебра. В приложении A приводятся концепции этой дисциплины, важные для квантовой физики. Так что, если вы знакомы с линейной алгеброй и свободно себя в ней чувствуете, переходите сразу к следующему разделу. В противном случае я рекомендовал бы вам, прежде чем двигаться дальше, изучить первые четыре раздела приложения A.
Я сначала сформулирую этот постулат1, а затем объясню его смысл более подробно.
Данный постулат содержит два понятия, которые мы еще не определили: квантовое состояние и физическая система. Понятия эти настолько фундаментальны, что строгое определение им дать трудно2. Поэтому я проиллюстрирую их интуитивно, на примерах.
Физическая система — это объект или даже одна либо несколько степеней свободы объекта, которые можно изучать независимо от остальных степеней свободы и других объектов. Например, если наш объект — атом, то квантовая механика может изучать его движение как целого (одна физическая система), а может исследовать движение его электронов вокруг ядра (другая физическая система). Но если мы хотим изучать образование из двух атомов молекулы, то нам следует учитывать, что динамические состояния обоих атомов и электронов в них влияют друг на друга, поэтому мы должны рассматривать все эти степени свободы как единую физическую систему. Если же речь идет о самой молекуле, то квантовая механика может изучать движение ее центра масс (одна физическая система), вращательное движение (другая физическая система), колебания ее атомов (третья система) или квантовые состояния ее электронов (четвертая система) и т. д.
Чтобы разобраться в понятии состояния, рассмотрим следующую физическую систему: массивную частицу, которая может двигаться вдоль координатной оси x. С одной стороны, возможно определить ее квантовое состояние, сказав, что «координата частицы — в точности x = 5 м». Это допустимое определение; мы будем обозначать такое состояние как |x = 5 м>. Еще одно допустимое состояние можно обозначить как |x = 3 м>. Эти состояния ортогональны ( = 0), потому что «несовместимы»: если достоверно известно, что координата частицы равна 5 м, она не может быть обнаружена в состоянии x = 3 м. Еще один пример допустимого квантового состояния, в котором частица может находиться, — это «движется со скоростью v = 4 м/с». Поскольку в таком состоянии импульс частицы известен точно, ее координата остается полностью неопределенной — т. е. данная частица может быть с некоторой вероятностью обнаружена в точке x = 5 м. Следовательно, скалярное произведение не равно нулю; эти состояния не являются несовместимыми.
Данный постулат гласит также, что если |x = 5 м> и |x = 3 м> — допустимые квантовые состояния, то состояние (|x = 5 м> + |x = 3 м>) /√2 (где 1√2 — нормирующий множитель, объяснение см. в упр. 1.1) также является допустимым. Называется оно суперпозицией состояний. Для большей наглядности скажем, что если |кошка жива> и |кошка мертва> — допустимые состояния физической системы «кошка», то допустима и суперпозиция этих состояний3.
Являются ли суперпозиции состояний математической абстракцией или они каким-то образом отражаются в физическом поведении системы? Верно, конечно же, второе. Как мы вскоре увидим, если подвергнуть, например, кошку в состояниях (|кошка жива> + |кошка мертва>) /√2 , (|кошка жива> — |кошка мертва>) /√2 и просто случайную смесь состояний |кошка жива> и |кошка мертва> квантовому измерению, то результаты мы будем наблюдать совершенно разные.
Напрашивается еще один вопрос. Мы не видим состояний суперпозиции в повседневной жизни — хотя они полностью совместимы с канонами квантовой механики. Почему? Как мы узнаем из следующей главы, дело в том, что суперпозиции макроскопически различных состояний чрезвычайно хрупки и быстро переходят в один из своих компонентов — в случае кошки Шрёдингера та быстро становится либо живой, либо мертвой. В микроскопическом мире, однако, состояния суперпозиции относительно устойчивы и нужны для физического описания системы. Необходимость иметь дело с объектами, само существование которых вступает в противоречие с нашим повседневным опытом, — одна из причин того, почему квантовая механика так сложна для понимания.
Подробнее читайте:
Львовский, А. Отличная квантовая механика : Учеб. пособие : в 2 ч. / Александр Львовский ; Пер. с англ. [Натальи Лисовой] — М.: Альпина нон-фикшн, 2019. — 422 с.