Электронный микроскоп: эпизод I

Мы начинаем публиковать блог предпринимателя, специалиста в области информационных технологий и по совместительству конструктора-любителя Алексея Брагина, в котором рассказывается о необычном опыте — вот уже год как автор блога занят восстановлением сложного научного оборудования — сканирующего электронного микроскопа — практически в домашних условиях. Читайте о том, с какими инженерно-техническими и научными задачами пришлось столкнуться Алексею и как он с ними справился.

Позвонил мне как-то друг и говорит: нашел интересную штуку, надо привезти к тебе, правда, весит полтонны. Так у меня в гараже появилась колонна от сканирующего электронного микроскопа JEOL JSM-50A. Ее давно списали из какого-то НИИ и вывезли в металлолом. Электронику потеряли, а вот электронно-оптическую колонну вместе с вакуумной частью удалось спасти.

Раз основная часть оборудования сохранилась, возник вопрос: нельзя ли спасти микроскоп целиком, то есть восстановить и привести его в рабочее состояние? Причем прямо в гараже, собственными руками, с помощью лишь базовых инженерно-технических знаний и подручных средств? Правда, прежде я никогда не имел дела с подобным научным оборудованием, не говоря уже о том, чтобы уметь им пользоваться, и не представлял, как оно работает. Но интересно ведь не просто запустить старую железяку в рабочее состояние — интересно во всем самостоятельно разобраться и проверить, возможно ли, используя научный метод, освоить совершенно новые области. Так я стал восстанавливать электронный микроскоп в гараже.

В этом блоге я буду рассказывать вам о том, что мне уже удалось сделать и что еще предстоит. Попутно я познакомлю вас с принципами функционирования электронных микроскопов и их основных узлов, а также расскажу о множестве технических препятствий, которые пришлось преодолеть по ходу работы. Итак, приступим.

Чтобы восстановить оказавшийся у меня микроскоп хотя бы до состояния «рисуем электронным лучом на люминесцентном экране», необходимо было следующее:

  • понять основы работы электронных микроскопов;
  • разобраться в том, что такое вакуум и какой он бывает;
  • как измеряют вакуум и как его получают;
  • как работают высоковакуумные насосы;
  • минимально разобраться в прикладной химии (какие растворители использовать для очистки вакуумной камеры, какое масло    использовать для смазки вакуумных деталей);
  • освоить металлообработку (токарные и фрезерные работы) для изготовления всевозможных переходников и инструментов;
  • разобраться с микроконтроллерами и схемотехникой их подключения.
  • Начнем по порядку. Сегодня я расскажу о принципах работы электронных микроскопов. Они бывают двух типов:

  • просвечивающий — TEM, или ПЭМ;
  • сканирующий — SEM, или РЭМ (от «растровый»).
  • Просвечивающий электронный микроскоп


    ПЭМ очень похож на обычный оптический микроскоп, только исследуемый образец облучается не светом (фотонами), а электронами. Длина волны электронного луча намного меньше, чем фотонного, поэтому можно получить существенно большее разрешение.
    Фокусировка электронного луча и управление им осуществляются с помощью электромагнитных или электростатических линз. Им даже присущи те же искажения (хроматические аберрации), что и оптическим линзам, хотя природа физического взаимодействия тут совершенно иная. Она, кстати, добавляет еще и новых искажений (вызванных закручиванием электронов в линзе вдоль оси электронного пучка, чего не происходит с фотонами в оптическом микроскопе).
    У ПЭМ есть недостатки: исследуемые образцы должны быть очень тонкие, тоньше 1 микрона, что не всегда удобно, особенно при работе в домашних условиях. Например, чтобы посмотреть свой волос на просвет, его необходимо разрезать вдоль хотя бы на 50 слоев. Это связано с тем, что проникающая способность электронного луча гораздо хуже фотонного. К тому же ПЭМ, за редким исключением, достаточно громоздки. Вот этот аппарат, изображенный ниже, вроде бы и не такой большой (хотя он выше человеческого роста и имеет цельную чугунную станину), но к нему еще прилагается блок питания размером с большой шкаф — итого необходима почти целая комната.

    Зато разрешение у ПЭМ — наивысшее. С его помощью (если сильно постараться) можно увидеть отдельные атомы вещества.

    Такое разрешение бывает особенно полезно для идентификации возбудителя вирусного заболевания. Вся вирусная аналитика ХХ века была построена на базе ПЭМ, и только с появлением более дешевых методов диагностики популярных вирусов (например, полимеразной цепной реакции, или ПЦР) рутинное использование ПЭМов для этой цели прекратилось.

    Например, вот как выглядит грипп H1N1 «на просвет»:


    Сканирующий электронный микроскоп


    SEM применяется в основном для исследования поверхности образцов с очень высоким разрешением (увеличение в миллион крат, против 2 тысяч у оптических микроскопов). А это уже гораздо полезнее в домашнем хозяйстве :)
    К примеру, так выглядит отдельная щетинка новой зубной щетки:

    В сканирующем микроскопе узко сфокусированный электронный луч «сканирует» поверхность образца точка за точкой, а всевозможные датчики улавливают то, что вылетает из образца после бомбардировки электронами.


    В частности, вылетать могут:

  • электроны с различными энергиями;
  • оптическое излучение видимого, инфракрасного, ультрафиолетового диапазонов;
  • рентгеновское излучение;
  • неведомое нечто.
  • Принцип работы сканирующего электронного микроскопа немного похож на работу электронно-лучевой трубки телевизора (в которой есть и глубокий вакуум, и электронная пушка, и система фокусирующих и отклоняющих линз). Вот, кстати, как он работает при съемке 1000 кадров в секунду:


    То же самое должно происходить и в электронно-оптической колонне микроскопа, только тут облучается образец, а не люминофор экрана, и изображение формируется на основе информации с датчиков, фиксирующих вторичные электроны, упруго-отраженные электроны и прочее. Об электронном микроскопе именно этого типа и пойдет речь в этом блоге.
    И кинескоп телевизора, и электронно-оптическая колонна микроскопа работают только под вакуумом. Но об этом я расскажу подробно в следующем выпуске.

    (Продолжение следует)