Астрономы выяснили, что главными «поставщиками» углерода в Млечном пути — четвертого по распространенности во Вселенной элемента, соединения которого составляют основу земной жизни — были углеродные звезды, в полтора-два раза больше Солнца. К такому выводу ученые пришли, проанализировав пару десятков белых карликов, сообщается в статье в Nature Astronomy.
Жизнь на Земле построена на огромном многообразии соединений углерода, но откуда он берется в нашей галактике до сих пор не до конца ясно. Одни исследования говорят о том, что он образуется в звездном ветре крупных тел, которые заканчивают свое существование взрывом сверхновой, в то время как другие наблюдения указывают на то, что источником углерода могут быть небольшие звезды (в основном углеродные, в чьей атмосфере больше углерода, чем кислорода), которые потеряли свою внешнюю оболочку и превратились в белые карлики — горячие плотные остатки ядер звезд.
Чтобы выяснить, какие углеродные звезды были основными распространителями углерода в межзвездном пространстве, Паола Мариго (Paola Marigo) из Университета Падуи вместе с коллегами проанализировала 19 белых карликов из звездных скоплений старше полутора миллиардов лет. Белые карлики — это один из финальных этапов существования звезд: после того, как звезда превращается в красный гигант (с Солнцем это произойдет примерно через пять миллиардов лет), она раздувается, сбрасывает внешнюю оболочку, а ее внутреннее ядро, наоборот, сжимается, формируя белый карлик. Ученые провели анализ соотношения массы «прародителя» белого карлика и конечной массы получившегося объекта: он может дать информацию о том, сколько обогащенного металлами газа (в астрономии металлы — элементы тяжелее водорода и гелия) было выброшено в межзвездную среду.
Как правило, чем больше изначальная масса звезды, тем больше будет масса белого карлика. Тем не менее, белые карлики оказались намного тяжелее, чем предсказывали модели, учитывающие их первоначальные размеры. В частности, скачок наблюдался среди объектов, масса прародителей которых превосходила солнечную в 1,65–2 раза. По мнению авторов, эта аномалия может быть следом медленной эволюции углеродных звезд.
В классических углеродных звездах обилие одноименного элемента считается результатом горения гелия в ходе тройного альфа-процесса внутри звезды. Продукты синтеза перемещаются к поверхности звезды эпизодической конвекцией. Астрономы предполагают, что гелиевые вспышки, которые запускают горения гелия в тройном альфа-процессе, в случае «прародителей» неожиданно крупных белых карликов изначально плохо достигали глубоких слоев звезды. Как следствие, углерод переносился из недр во внешнюю оболочку очень медленно, и звездный ветер, причиной возникновения которого считается давление излучения в спектральных линиях тяжелых элементов, таких как углерод или азот, также оказался слабым. Это продлило жизнь углеродным звездам и дало их ядрам больше времени на рост.
Более активными «поставщиками» углерода в молодом Млечном пути могли быть звезды, которые в два раза превосходят по размерам Солнце (хотя менее крупные тела все равно играли важную роль). В них содержание углерода в оболочке должно было быть более высоким, а звездный ветер — сильнее. Также исследователи показали, что звезды с массами менее 1,5 солнечной не вносили вклад в распространение углерода в межзвездной среде.
Ранее мы рассказывали о том, что астрономы нашли самый близкий к Земле двойной белый карлик с чрезвычайно малой массой. Предполагается, что через несколько десятков миллиардов лет его компоненты сольются, что может привести к вспышке сверхновой.
Кристина Уласович
Чем астрономов привлекает это событие и как его наблюдать
Мнение редакции может не совпадать с мнением автора
27 августа Сатурн выстроится примерно в одну линию с Землей и Солнцем. В астрономии этот момент называют противостоянием или оппозицией. За счет своего расположения в космическом пространстве окольцованная планета достигнет максимальной яркости и угловых размеров для земных наблюдателей. Это лучшее время, чтобы наблюдать Сатурн в телескоп или зрительную трубу. Александр Смирнов, автор YouTube-канала Astro Channel, рассказывает, почему не стоит пропускать это событие и как начинающим астрономам к нему подготовиться. Противостояние бывает только у Сатурна? Нет, оно случается у всех внешних планет — Марса, Юпитера, Сатурна, Урана и Нептуна. Реже всего противостояние происходит у красной планеты — раз в 780 дней. Однако именно оппозиция Марса самая красочная: из невзрачной красноватой точки он превращается в заметный объект. Его яркость может меняться от 1 до −2 звездной величины — планета почти так же хорошо видна на небе, как Сириус и Юпитер. Еще раз в 15 лет случаются Великие противостояния — в это время Марс находится ближе всего к Земле. У остальных внешних планет противостояния менее выражены и происходят чаще: раз в 12-13 месяцев. Но у окольцованной планеты оно особенное. Чем интересен Сатурн? В момент противостояния кольца Сатурна становятся заметно ярче. Дело в том, что они не монолитны, а состоят из фрагментов льда и пыли: в обычном состоянии кольца отбрасывают друг на друга тени — это влияет на общую яркость. В момент противостояния тени направлены строго от наблюдателя, поэтому частицы колец друг друга не затмевают и суммарный блеск становится больше. Выражен этот эффект в течение недели-двух до и после противостояния. Затем яркость колец снова уменьшается. Наблюдая Сатурн в течение месяца после 27 августа, можно заметить плавное снижение яркости. Кстати, не каждый раз кольца Сатурна одинаково красивы. Дважды за сатурнианский год — примерно раз в 13-15 лет — они совсем исчезают. Это случается из-за того, что ось вращения Сатурна наклонена к его орбите на 27 градусов. И вблизи сатурнианских равноденствий для земных наблюдателей тонкие кольца (шириной около 1 км) видны с ребра. В этом году кольца у́же, чем в прошлом. А в марте 2025 года они практически исчезнут. К сожалению, увидеть это будет крайне сложно, поскольку Сатурн в это время окажется вблизи Солнца для земных наблюдателей — и будет слишком светло, чтобы что-то разглядеть. Какая техника понадобится? Чтобы разглядывать Сатурн в деталях, нужно вооружиться зрительной трубой или телескопом. Увидеть кольца можно при увеличении от 30 крат и выше, поэтому в большинстве случаев бинокли не подходят для таких наблюдений — у них фиксированное увеличение и, как правило, не более 20 крат. При 100-кратном увеличении на Сатурне можно различить облачные пояса, а также увидеть не только кольца, но и щель Кассини между ними. Рядом будет заметен еще и спутник планеты — Титан. Самый важный параметр для подбора телескопа — диаметр объектива. Чем он больше, тем больше света соберет, а также лучше его разрешающая способность и увеличение. При наблюдениях с помощью зрительной трубы пригодится штатив — позволит избежать сильной тряски изображения. Конечно, картинка будет не столь детализирована, как на снимках с космических аппаратов и астрокамер. Но мой опыт говорит, что Сатурн — одна из самых впечатляющих планет. Особенно если это ваше первое наблюдение. Чтобы разглядеть планету как следует, ее можно заснять. Профессиональные фотографы используют астрокамеры, увеличивают фокусное расстояние с помощью линзы Барлоу и специальным корректором минимизируют влияние атмосферной дисперсии. Причем они делают не фото, а видео — из ролика можно извлечь несколько максимально четких кадров. Лучшие из них складывают, обрабатывают, и на выходе получают детальную фотографию — наподобие тех, что можно найти на просторах интернета. Любители, у которых нет дорогостоящего оборудования, могут попробовать заснять планету на смартфон — для этого нужно подставить объектив к окуляру телескопа и сделать фотографию. Чтобы планета на картинке не была пересвечена, можно использовать профессиональный режим и самостоятельно подобрать чувствительность и экспозицию. Кроме того, можно попробовать снять видеоролик и обработать его по алгоритму профессиональных фотографов. Обрезать и центрировать объект в кадре в программе PIPP, выровнять и сложить лучшие кадры — в Autostakkert 3. А финальную обработку для увеличения четкости сделать в Registax 6. Нужно ли куда-то ехать? С наблюдением Сатурна справятся даже новички. Он довольно яркий, поэтому его без проблем можно наблюдать в городе, выезжать за пределы не обязательно. Хотя созерцать звездное небо вдали от засветки намного приятнее. Главная проблема, с которой мы можем столкнуться при наблюдении планет, — это атмосфера Земли. Часто она нестабильна: потоки теплого воздуха, испарение и туман могут размывать изображение. Универсального инструмента для борьбы с дрожанием картинки нет. Иногда помогает просто подождать. Во-первых, телескоп или зрительная труба, выставленные на улицу, спустя некоторое время примут температуру окружающего воздуха, а это большой плюс для качества изображения. Во-вторых, в течение ночи состояние атмосферы может меняться несколько раз, и поймать «спокойные» минуты вполне возможно. В-третьих, есть старое астрономическое правило — чем больше смотришь, тем больше видишь. Глазам нужна тренировка, как в спортзале: сделали подход к окуляру, понаблюдали, отдохнули. Потом с новыми силами опять смотрим. Спустя некоторое время вы поймете, что уже различаете больше деталей, чем при первом взгляде. Кроме того, для наблюдения планет может быть полезным оптический прибор — корректор атмосферной дисперсии. Благодаря ему края изображения не будут окрашиваться в сине-желтые цвета. Как найти Сатурн на небе? Если вы ориентируетесь по звездному небу, то без проблем отыщете Сатурн. В этом году он находится в созвездии Водолея. В момент противостояния (примерно в час ночи по местному времени) он займет наивысшую точку над южной стороной неба. Безусловно, можно перепутать Сатурн с Юпитером — в это же время он будет сиять высоко на востоке. Если боитесь ошибиться, воспользуйтесь компьютерными планетариями для подстраховки. Самый популярный и при этом бесплатный — Stellarium. Для смартфонов также существуют приложения StarWalk 2 и SkySafari. А для мониторинга погоды можно воспользоваться сервисом Windy. Что еще понаблюдать? Вблизи Сатурна на небе будет светить яркая луна — сейчас она стремится к полнолунию. В телескоп можно разглядывать поверхность спутника. Из ярких планет поблизости с Сатурном будет Юпитер. Помимо облачных поясов, рядом с ним можно будет увидеть четыре галилеевых спутника — Ио, Европу, Каллисто и Ганимеда. Ранним утром будет восходить недавно открытая комета C/2023 P1 (Nishimura). В середине сентября, если она переживет сближение с Солнцем, будет хорошо видна на небе. Но точных прогнозов для нее сейчас нет. Ведь кометы — одни из самых непредсказуемых объектов в Солнечной системе.