Специалисты американских компаний 3DR, Autodesk и Atkins провели серию полетов дронов в воздушном пространстве Международного аэропорта Хартсфилд-Джексон Атланта, пишет Aviation Week. Это самый загруженный в мире аэропорт, ежегодно пропускающий через себя около ста миллионов пассажиров. Дроны использовались для составления трехмерных карт аэропорта.
Власти Атланты в штате Джорджия, где расположен аэропорт, в 2015 году приняли программу его реконструкции. Она предусматривает расширение терминалов, снос старых построек и реорганизацию инфраструктуры. На этапе планирования работ выяснилось, что составить схему аэропорта с отмеченными под снос или реконструкцию зданиями без приостановки полетов невозможно.
По этой причине власти заказали у компаний 3DR, Autodesk и Atkins трехмерное картографирование аэропорта с помощью дронов. Дело в том, что дроны со специальными системами выполняют такую работу очень быстро. Для допуска беспилотников в воздушное пространство аэропорта было получено специальное разрешение Федерального управления гражданской авиации США.
Полеты дронов в воздушном пространстве аэропортов и вблизи него строго запрещены. Считается, что беспилотники, столкнувшись с взлетающим или заходящим на посадку пассажирским самолетом, могут стать причиной серьезной аварии. Наиболее опасными деталями дронов считаются рама и литий-полимерные аккумуляторы.
Первый полет в рамках полученного разрешения дрон в аэропорту Атланты совершил 10 января 2017 года. Каждый полет согласовывался с авиадиспетчерами и находился под их контролем. В итоге почти за два месяца удалось составить подробную трехмерную карту аэропорта, на реконструкцию которого планируется потратить шесть миллиардов долларов.
В сентябре 2016 года Авиационная комиссия Южной Каролины, отвечающая за организацию воздушного движения в этом штате, использовала беспилотники для поиска возможных препятствий на глиссаде в аэропортах. Разрешение на применение дронов также выдало Федеральное управление гражданской авиации США. С помощью беспилотников специалисты проверяли высоту деревьев вокруг территории аэропорта.
Василий Сычёв
Его система управления автоматически находит оптимальные точки в воздушных потоках
Инженеры разработали алгоритм управления для беспилотников самолетного типа, который позволяет парить на восходящих воздушных потоках, расходуя в 150 раз меньше энергии, чем при активном полете с работающим двигателем. Алгоритм отслеживает и подстраивается под непрерывно изменяющиеся воздушные потоки, сохраняя высоту. Препринт доступен на arXiv.org. При поддержке Angie — первого российского веб-сервера Беспилотники самолетного типа более энергоэффективны, чем мультикоптеры. Благодаря крыльям они способны преодолевать большие дистанции и могут гораздо дольше находиться в воздухе. Причем эти параметры могут быть увеличены за счет парения — планирующего полета, в котором аппарат использует восходящие воздушные потоки для удержания в воздухе без использования тяги двигателей, аналогично тому, как это делают некоторые птицы. Группа инженеров под руководством Гвидо де Круна (Guido de Croon) из Делфтского технического университета разработала систему управления, которая позволяет беспилотникам самолетного типа без какой-либо предварительной информации о поле ветра самостоятельно находить оптимальные точки в восходящих воздушных потоках и использовать их для длительного парения с минимальным расходом энергии. В системе управления вместо обычного ПИД-регулятора используется метод инкрементальной нелинейной динамической инверсии, контролирующий угловое ускорение, подстраивая его под желаемые значения. Система управления может без изменения настроек работать и в режиме парения, и при полете с включенным двигателем во время поиска новых оптимальных точек в воздушных потоках или для компенсации резких порывов ветра. Для поиска оптимальных точек в поле ветра, в которых скорость снижения полностью компенсируется восходящим потоком воздуха, применяется алгоритм имитации отжига. Он случайно выбирает направления в пространстве пытаясь найти такую точку, в которой беспилотник может устойчиво лететь с минимально возможной тягой двигателя. Для тестов инженеры построили 3D-печатный прототип на основе модели радиоуправляемого самолета Eclipson model C. Он имеет размах крыла 1100 миллиметров и массу 716 грамм вместе с аккумуляторной батареей. В качестве полетного контроллера применяется Pixhawk 4. Помимо установленного под крылом и откалиброванного в аэродинамической трубе сенсора скорости, беспилотник имеет GPS-модуль для отслеживания положения во время полетов на открытом воздухе. В помещении применяется оптическая система Optitrack. Испытания проводились в аэродинамической трубе, возле которой установили наклонную рампу, для создания восходящего воздушного потока. Прототип запускали в воздушном потоке сначала на ручном управлении, после чего включали автопилот. Разработчики провели эксперименты двух типов. В первом они постепенно изменяли скорость воздушного потока от 8,5 до 9,8 метров в секунду при фиксированном угле наклона рампы. Во втором эксперименте скорость воздушного потока оставалась неизменной, зато менялся угол установки подиума. В обоих случаях алгоритм системы управления быстро находил в поле ветра точки, в которых мог поддерживать планирующий полет в течение более чем 25 минут, лишь изредка задействуя тягу двигателя в среднем лишь на 0,25 процента от максимальной, хотя при таких значениях воздушного потока для поддержания обычного полета требуется около 38 процентов. При изменении поля ветра из-за изменившегося угла наклона рампы или скорости воздушного потока алгоритм успешно находил и удерживал новое положение равновесия. В будущем инженеры планируют провести испытания на открытом воздухе. https://www.youtube.com/watch?v=b_YLoinHepo Американские инженеры и планетологи предложили использовать планер, способный длительное время держаться в воздухе за счет восходящих потоков и термиков, для изучения каньонов Марса. Предполагается, что такие аппараты с надувными разворачиваемыми крыльями могут стартовать с аэростата или дирижабля и затем планировать в атмосфере Марса от 20 минут до суток.