«Вселенная. Путешествие во времени и пространстве»

Мнение редакции может не совпадать с мнением автора

В книге «Вселенная. Путешествие во времени и пространстве» (издательство «Питер») директор астрономической обсерватории Иркутского государственного университета Сергей Язев рассказывает о том, как менялись взгляды человечества на устройство Вселенной, почему в правильности основных физических законов нашего мира глупо сомневаться и на какие вопросы о мироустройстве ученым только предстоит ответить. Оргкомитет премии «Просветитель» включил эту книгу в «длинный список» из 24 книг, среди которых будут выбраны финалисты и лауреаты премии. N + 1 предлагает своим читателям ознакомиться с отрывком, посвященным зарождению астрофизики: открытию закона смещения Вина и возможностей спектрального анализа.

Вселенная, управляемая физикой

Бог Ньютону сказал откровенно:
«Мне рулить надоело Вселенной!
Сконструируй, Ньютон,
Тяготенья закон —
Пусть он сам управляет Вселенной!»

Сергей Валлаго,
«Законы природы»

Критическое мышление и основанный на нем научный метод позволяют добиться поразительных успехов. Еще раз повторим важный тезис: на протяжении десятков тысяч лет, пока не было науки, человек не мог ничего достоверно узнать об устройстве мира.

Замечательный пример применения научного метода — зарождение астрофизики.

Как узнать об устройстве Солнца, звезд и планет? Как получить информацию о том, из чего состоят небесные тела? Как определить их температуру, скорость движения (на больших расстояниях даже быстро движущиеся тела кажутся неподвижными)?

Казалось, узнать это невозможно. В просвещенном XIX веке, в 1835 году французский философ Огюст Конт писал:

«Мы представляем себе возможность определения их (небесных тел. — Авт.) форм, расстояний, размеров и движений, но никогда, никакими средствами мы не сможем изучить их химический состав, их минералогическое строение, природу органических существ, живущих на их по верхности… Я  остаюсь при своем мнении, что любое знание истинных средних температур звезд неизбежно должно быть навсегда скрыто от нас».

Слова вроде «навсегда» и «никогда» надо использовать аккуратно. Потенциал науки, вооруженной критическим мышлением, оказался громадным — она смогла решить эту задачу! При этом — не летая к далеким звездам.

Что попадает к нам на Землю от далеких звезд? Только свет. Начиная с середины XIX века физики выяснили, что свет несет в себе информацию о многих физических свойствах источника света, то есть звездах.

Еще опыты Ньютона показали, что в свете ближайшей к нам звезды — Солнца — присутствует свет с разной длиной волны. Там есть и световые волны, которые наш глаз воспринимает как красный цвет, и волны, которые мы получаем в виде желтого цвета, и так далее. Природа сама научилась разлагать свет в спектр — разноцветную полоску, в которой лучи света с разной длиной волны расходятся в разные стороны. В природе капельки воды в атмосфере могут работать как спектральный прибор — лучи солнечного света, проходя сквозь них, расходятся в разные стороны в зависимости от длины волны, и тогда мы видим радугу.

Ньютон соорудил первый искусственный спектральный прибор — спектроскоп. В  дальнейшем физики научились строить более совершенные аппараты. Анализ спектров солнечного света позволил определять многое.

Например, удалось определить температуру излучающей свет поверхности Солнца, причем даже несколькими способами. Если с помощью спектрального прибора разложить солнечный свет в спектр, а затем измерить, сколько энергии приносят от Солнца отдельно красные лучи, отдельно зеленые, отдельно фиолетовые — получится график, напоминающий холм с более крутым левым склоном и более пологим правым.

Оказалось (физики смогли построить соответствующую теорию), что температуру поверхности Солнца можно определить, зная, где находится «вершина холма» на графике (какой длине волны приходящего света соответствует максимум излучения). Простая формула позволяет рассчитать температуру: она тем больше, чем меньше длина волны максимума этой кривой на графике. Эта закономерность носит название закона смещения Вина (по имени открывателя — лауреата Нобелевской премии по физике, немецкого физика Вильгельма Вина (1864–1928)). Закон можно сформулировать так:

Длина волны максимума излучения λмакс обратно пропорциональна температуре источника излучения Т (в нашем случае поверхности Солнца).

λмакс= const / T

Почему закон называется законом смещения? Потому что максимум смещается на графике влево или вправо — в зависимости от температуры.

Представим себе, что максимум излучения звезды приходится на синие или фиолетовые лучи (длина волны равна 400 нанометрам). Это значит, что звезда очень сильно нагрета — температура ее поверхности равна 15–20 тысячам градусов!

Опытные астрономы могут грубо оценить температуру яркой звезды просто на глаз — исходя из ее цвета.

Если максимум соответствует длине волны 500 нанометров (это зеленый цвет), температура равна примерно 6 тысячам градусов. К таким звездам, например, относится наше Солнце. В потоке света от Солнца больше всего зеленого и красного цветов, их смешение нашим глазом воспринимается как желтый. Поэтому Солнце и кажется желтоватым, хотя в потоке света от Солнца, конечно, есть и красные, и фиолетовые лучи. Нетрудно догадаться, что, согласно закону Вина, по цвету можно сразу определить температуру звезды: температура голубых звезд гораздо выше, чем у Солнца (15–20 тысяч градусов), зато температура красных звезд — меньше (3 тысячи градусов).

Самое замечательное, что расстояние до звезды не влияет на возможности определения ее температуры. Опытные астрономы могут грубо оценить температуру яркой звезды просто на глаз — исходя из ее цвета. Если света звезды хватает, чтобы разложить его в спектр и построить распределение энергии излучения по длинам волн, то максимум получившейся кривой на графике точно укажет на температуру этой звезды.

Теперь нужно остановиться и обсудить вопрос, который часто возникает у людей, далеких от физики. Автор хорошо себе представляет, как этот вопрос задала бы девочка, про которую рассказано в предисловии. «Вы, астрофизики, построили теорию, — говорят такие люди. — Но почему вы решили, что эта теория верна? Вы проводите какие-то непонятные измерения, потом применяете какие-то вычисления по каким-то вашим формулам и затем утверждаете, что нашли температуру далекой звезды. Но кто вам сказал, что вы нашли ее правильно? Как вы можете доказать, что ваш ответ верен?»

Дело в том, что законы природы действуют однозначно. У закона всемирного тяготения нет исключений. Рассчитывая эффекты, порождаемые им, включая траектории небесных тел, форму небесных тел (закон тяготения отвечает и за явление приливов), мы убеждаемся тысячи и миллионы раз, что все получается в полном согласии с расчетами. Спутники, космические корабли, ядра комет, астероиды движутся в полном соответствии с законом тяготения. Если мы видим, что закон (как нам кажется) нарушается — это значит, что воздействие каких-то тел в рамках этого же закона мы учитываем не полностью.

Так было, когда открытый Вильямом Гершелем Уран, судя по наблюдениям, двигался не совсем так, как можно было ожидать, исходя из закона тяготения. Появилась версия: закон верный, но мы не все учитываем! А что, если за Ураном вокруг Солнца движется еще одна планета, которая, в полном соответствии с законом тяготения, тоже притягивает к себе Уран и его орбита от этого «возмущается»? И тогда возникла задача: анализируя возмущения орбиты Урана, рассчитать, где должна находиться восьмая планета Солнечной системы. Французский астроном Урбен Леверье (1811−1877) выполнил необходимые расчеты и указал, куда надлежит навести телескоп. Немецкий астроном Иоганн Галле (1812−1910) навел туда телескоп и обнаружил ранее не известную планету, названную Нептуном.

Открытие Нептуна считается триумфом закона всемирного тяготения. Об этом открытии говорят, что оно было сделано «на кончике пера»: сначала координаты неизвестной планеты на небе были вычислены и записаны, а затем расчеты были подтверждены на практике наблюдениями.

Поразительно, но до сих пор появляются люди, которым почему-то не нравится закон тяготения, и они хотят предложить взамен что-то свое. Эти попытки обречены на провал: мы пользуемся законом ежесекундно, он проверен бесчисленное число раз и прекрасно действует. Нет сомнений, что теми же формулами можно будет пользоваться и через тысячу лет.

Вернемся к закону Вина. Он основан на других, также проверенных тысячи раз закономерностях, которые были использованы при его выводе. Но главное, что он проверен в экспериментах. Да, мы не можем непосредственно измерить температуру поверхности Солнца. Но мы можем сделать это во время эксперимента в лаборатории, определяя, как меняется форма графика распределения энергии излучения по длинам волн с изменением температуры источника излучения! Так вот, эксперименты в лаборатории показали: закон работает, форма кривой на графике соответствует результатам вычислений по формулам, расчеты температуры соответствуют измерениям. Это позволяет считать, что формула правильна.

Спектральный анализ позволяет определять не только температуру удаленных источников света. Спектры несут в себе и информацию о химическом составе источника излучения.

Логика и математика в физике работают однозначно. Это означает, что если формулы правильны, то иначе быть не может. А формулы (как сказано выше) проверены, в том числе и в других экспериментах, и поэтому могут считаться доказанными. Кроме того, выше уже указывалось, что существуют и другие способы определять дистанционно температуру Солнца (или других звезд). Эти другие способы дают такой же результат: температура поверхности Солнца близка к 6 тысячам градусов. Результаты разных методов сходятся.

Решая школьную задачу, например, на сколько градусов нагреется вода, если поместить туда горячий кусок известного нам металла известной массы, не требуется каждый раз проверять решение задачи экспериментально. Используемые формулы столько раз проверялись на практике, что нет сомнений в их правильности. Сегодня так получается и в астрофизике. Отработанные за полтора столетия методы дают верные совпадающие результаты.

Кроме того, неправильная теория рано или поздно даст неверные предсказания, не в этом, так в другом случае. Одни и те же формулы используются в разных случаях, и если бы там была ошибка, обязательно проявился бы неверный ответ. Если же прогнозы, основанные на расчетах, всегда совпадают с теорией, — нет оснований не доверять теории.

Спектральный анализ позволяет определять не только температуру удаленных источников света. Спектры несут в себе и информацию о химическом составе источника излучения.

Сегодня мы знаем, что атомы вещества имеют свойства поглощать свет — каждый тип атомов на своей, вполне определенной, длине волны. Если взять спектр Солнца (или любой другой звезды), можно увидеть, что он пересечен множеством темных линий. Они называются линиями Фраунгофера — имя замечательного немецкого оптика уже упоминалось в этой книге.

Поскольку спектр — это разложение света по длинам волн, каждой длине волны соответствует свой участок спектра (своего цвета). И если, например, во внешних слоях звезды присутствует много атомов водорода, а атомы водорода имеют свойство поглощать свет на вполне определенной длине волны, понятно, что в спектре на этой длине волны будет меньше света. Часть света на этой длине волны оказалась поглощенной атомами водорода. Значит, опытный спектроскопист, анализируя спектр, увидит на этом месте недостаток света в спектре — темную линию Фраунгофера на длине волны, соответствующей поглощению света водородом, и скажет: «Ага! На этой звезде есть водород». Темные линии (их еще называют линиями поглощения) Фраунгофера похожи на отпечатки пальцев разных химических элементов. Если на спектре звезды видны линии, порожденные атомами железа, кислорода, кальция и так далее — это означает, что есть такие атомы в раскаленной оболочке звезды. Более того. Нетрудно догадаться, что если атомов того или иного элемента там много, то и линия поглощения, принадлежащая этому элементу, будет более «мощной» (атомы «съедят» больше света на этой длине волны).

Теория линий поглощения физиками сейчас разработана детально. Анализируя спектральные линии, можно получить немало «зашитой» в спектре информации об источнике излучения. Дело это непростое (теория звездных спектров, технология их обработки и анализа достаточно сложны), но оно стоит усилий: благодаря анализу линий Фраунгофера мы можем определить химический состав Солнца и любой другой звезды! При этом расстояние до звезды не играет роли.

Итак, благодаря спектральному анализу человечество узнало то, о чем писал в 1835 году Огюст Конт, утверждая, что мы этого не узнаем никогда. Замечательно, что к тому времени Фраунгофер уже двадцать лет как открыл линии поглощения в спектрах. Но люди еще не знали, что это «метки», которые оставили атомы разных элементов в спектре Солнца.

Подробнее читайте:
Язев, С. Вселенная. Путешествие во времени и пространстве. — СПб.: Питер, 2020. — 288 с.: ил. — (Серия «New Science»).

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.